Hellendoorn / Driankov | Fuzzy Model Identification | E-Book | www.sack.de
E-Book

E-Book, Englisch, 319 Seiten, eBook

Hellendoorn / Driankov Fuzzy Model Identification

Selected Approaches
1997
ISBN: 978-3-642-60767-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Approaches

E-Book, Englisch, 319 Seiten, eBook

ISBN: 978-3-642-60767-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations.

Hellendoorn / Driankov Fuzzy Model Identification jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


General Overview.- Fuzzy Identification from a Grey Box Modeling Point of View.- 1. Introduction.- 2. System Identification.- 3. Fuzzy Modeling Framework.- 4. Fuzzy Identification Based on Prior Knowledge.- 5. Example — Tank Level Modeling.- 6. Practical Aspects.- 7. Conclusions and Future Work.- References.- Clustering Methods.- Constructing Fuzzy Models by Product Space Clustering.- 1. Introduction.- 2. Overview of Fuzzy Models.- 3. Structure Selection for Modeling of Dynamic Systems.- 4. Fuzzy Clustering.- 5. Deriving Takagi-Sugeno Fuzzy Models.- 6. Example: pH Neutralization.- 7. Practical Considerations and Concluding Remarks.- A. The Gustafson-Kessel Algorithm — MATLAB Implementation.- References.- Identification of Takagi-Sugeno Fuzzy Models via Clustering and Hough Transform.- 1. Introduction.- 2. The Identification Method.- 3. Example 1.- 4. Example 2.- 5. Summary of the Identification Procedure.- 6. Practical Considerations and Concluding Remarks.- References.- Rapid Prototyping of Fuzzy Models Based on Hierarchical Clustering.- 1. Introduction.- 2. The Fuzzy C-Means Algorithm.- 3. Using Hierarchical Clustering to Preprocess Data.- 4. Rapid Prototyping of Approximative Fuzzy Models.- 5. Rapid Prototyping of Descriptive Fuzzy Models.- 6. Examples.- 7. Practical Considerations and Concluding Remarks.- A. Proofs of Propositions.- References.- Neural Networks.- Fuzzy Identification Using Methods of Intelligent Data Analysis.- 1. Introduction.- 2. Neuro-Fuzzy Methods.- 3. Density Estimation.- 4. Fuzzy Clustering.- 5. Conclusion.- A. From Rules to Networks.- B. Learning Rule for RBF Networks.- C.Update Equations for Gaussian Mixtures.- D. Adaptation Algorithm for Fuzzy Clustering.- References.- Identification of Singleton Fuzzy Models via Fuzzy Hyperrectangular Composite NN.- 1. Introduction.- 2. Classification of Fuzzy Models.- 3. Fuzzy Neural Networks.- 4. Identification of Singleton Fuzzy Models.- 5. Simulation Results.- 6. Practical Considerations and Concluding Remarks.- References.- Genetic Algorithms.- Identification of Linguistic Fuzzy Models by Means of Genetic Algorithms.- 1. Introduction.- 2. Evolutionary Algorithms and Genetic Fuzzy Systems.- 3. The Fuzzy Model Identification Problem.- 4. The Genetic Fuzzy Identification Method.- 5. Example.- 6. Practical Considerations and Concluding Remarks.- References.- Optimization of Fuzzy Models by Global Numeric Optimization.- 1. Introduction.- 2. Theoretical Aspects of Fuzzy Models.- 3. The Fuzzy Identification Method.- 4. Simulation Results.- 5. Practical Aspects.- References.- Artificial Intelligence.- Identification of Linguistic Fuzzy Models Based on Learning.- 1. Introduction.- 2. Basic Concepts and Notation.- 3. The Identification Problem.- 4. The Fuzzy Identification Method.- 5. Numeric Examples.- 6. Practical Aspects and Concluding Remarks.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.