Hernández-García / Barrientos / Velastin | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications | E-Book | sack.de
E-Book

E-Book, Englisch, 276 Seiten

Reihe: Lecture Notes in Computer Science

Hernández-García / Barrientos / Velastin Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

27th Iberoamerican Congress, CIARP 2024, Talca, Chile, November 26–29, 2024, Proceedings, Part II
Erscheinungsjahr 2024
ISBN: 978-3-031-76604-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

27th Iberoamerican Congress, CIARP 2024, Talca, Chile, November 26–29, 2024, Proceedings, Part II

E-Book, Englisch, 276 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-76604-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set LNCS 15368-15369 constitutes the refereed proceedings of the 27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024, held in Talca, Chile, during November 26-29, 2024.
The 35 full and 3 short papers presented in these proceedings were carefully reviewed and selected from 61 submissions. The papers presented in these two volumes are clustered into various thematical issues as follows: 
Part I: Mathematical methods and computing techniques for artificial intelligence and pattern recognition, bioinformatics.
Part II: Biometrics, cognitive and humanoid vision, computer vision, image analysis, intelligent data analysis.

Hernández-García / Barrientos / Velastin Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Unmasking Phishing Attempts A Study on Detection in Spanish Emails.- Comparative Analysis of Spatial and Spectral Methods in GNN for Power Flow in Electrical Power Systems.- An Effective Artificial Intelligence Pipeline for Automatic Manatee Count Using their Tonal Vocalizations.- Exploring Neural Joint Activity in Spiking Neural Networks for Fraud Detection.- Rethinking the Quality of Synthetic Palm Vein Images from Spectral Analysis.- An uncertainty driven ScaledYOLOv4 for open pit mining helmet detection.- A generative algorithm to compute NanoFingerprints.- Impact of agricultural production on climate change in South America comparative analysis between 1990 and 2020.- VAVnets retinal vasculature segmentation in few shot scenarios.- Remote Sensing Based Precipitation Detection using Conditional GAN and Recurrent Neural Networks.- Data Driven Genetic Algorithm for the Optimization of Water Distribution Networks A New Surrogate Model for Estimating Investment and Operational Costs in Pumping Stations.- Gene Regulatory Network for the Tryptophanase operon under the Threshold Boolean Network Model.- Multilabel Classification of Intracranial Hemorrhages using Deep Learning and Preprocessing Techniques on Non Contrast CT Images.- Segmentation of Brain Tumor Parts from Multi Spectral MRI Records Using Deep Learning and U net Architecture.- Exploiting the Segment Anything Model (SAM) for Lung Segmentation in Chest X ray Images.- Predicting Next Phases of Multi-Stage Network Attacks A Comparative Study of Statistical and Deep Learning Models.- Improving Suicide Ideation Screening with Machine Learning and Questionnaire Optimization through Feature Analysis.- Aquila Optimizer for hyperparameter metaheuristic optimization in Extreme Learning Machine.- Mixture of LSTM Experts for Sales Prediction with Diverse Features.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.