Herrera-Viedma / Pasi / Crestani | Soft Computing in Web Information Retrieval | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 197, 319 Seiten

Reihe: Studies in Fuzziness and Soft Computing

Herrera-Viedma / Pasi / Crestani Soft Computing in Web Information Retrieval

Models and Applications
1. Auflage 2008
ISBN: 978-3-540-31590-2
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

Models and Applications

E-Book, Englisch, Band 197, 319 Seiten

Reihe: Studies in Fuzziness and Soft Computing

ISBN: 978-3-540-31590-2
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



Appl.Mathematics/Computational Methods of Engineering - Short description currently not available.

Herrera-Viedma / Pasi / Crestani Soft Computing in Web Information Retrieval jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Acknowledgments;9
3;Foreword;10
4;Contents;11
5;Part I Document Classification;13
5.1;A Dynamic Hierarchical Fuzzy Clustering Algorithm for Information Filtering;14
5.1.1;1 Introduction;15
5.1.2;2 Categorization of Documents in IR Based;16
5.1.3;on Clustering Techniques;16
5.1.3.1;2.1 Partitioning Clustering Method;17
5.1.3.2;2.2 Hierarchical Clustering Method;20
5.1.3.3;divisive;20
5.1.3.4;agglomerative;20
5.1.3.5;2.3 Incremental Clustering Method;20
5.1.3.6;single-Pass;21
5.1.3.7;K-nearest neighbour;21
5.1.4;3 The Rationale of the Proposed Approach;21
5.1.4.1;fuzzy partition;22
5.1.4.2;fuzzy hierarchy;22
5.1.4.3;incremental dynamic clustering;22
5.1.4.4;algorithm).;22
5.1.4.5;semi-supervised fuzzy clustering;23
5.1.4.6;techniques;23
5.1.4.7;documents are represented by large and sparse vectors;23
5.1.4.8;number of clusters that must be generated at each;23
5.1.4.9;level of the hierarchy is not known;23
5.1.5;4 The Dynamic Fuzzy Hierarchical Clustering Algorithm;24
5.1.5.1;4.1 Documents Indexing Criteria for Clustering Purposes;24
5.1.5.2;Den;25
5.1.5.3;4.2 Input of the Clustering Algorithm;25
5.1.5.4;4.3 The Fuzzy Hierarchy of Documents;26
5.1.5.5;4.4 Generation of the Fuzzy Clusters;27
5.1.5.6;Histogram;28
5.1.5.7;Histogram(;29
5.1.5.8;4.5 Updating the Fuzzy Hierarchy with New Documents;29
5.1.6;5 Preliminary Experiments;30
5.1.6.1;sport;30
5.1.6.2;safety;30
5.1.6.3;game;30
5.1.6.4;math;30
5.1.6.5;lego;30
5.1.6.6;math;30
5.1.6.7;game ,;30
5.1.6.8;sport;30
5.1.6.9;game );30
5.1.6.10;Histogram;31
5.1.6.11;lego;31
5.1.7;6 Conclusions;32
5.1.8;Acknowledgements;32
5.1.9;References;32
5.2;A Theoretical Framework for Web Categorization in Hierarchical Directories using Bayesian Networks;35
5.2.1;1 Introduction;35
5.2.2;2 Introduction to Bayesian Networks;37
5.2.3;3 Related Work on Hierarchical Categorization;38
5.2.4;4 Representing Hierarchical Web Directories using a Bayesian Network;39
5.2.4.1;4.1 Improving the Basic Model;43
5.2.4.2;4.2 Assessment of the Probability Distributions;44
5.2.5;5 Categorizing Web Pages: Inference;47
5.2.5.1;ci,;48
5.2.5.2;cj);48
5.2.5.3;ci, cj;48
5.2.5.4;ci;48
5.2.5.5;cj;48
5.2.5.6;ci,;48
5.2.5.7;cj);48
5.2.5.8;ci;48
5.2.5.9;cj;48
5.2.5.10;Example:;49
5.2.6;6 Concluding Remarks and Future Works;51
5.2.7;Acknowledgments;52
5.2.8;References;52
5.3;Personalized Knowledge Models Using RDF-Based Fuzzy Classi.cation;54
5.3.1;1 Introduction;54
5.3.2;2 Preliminary Considerations: From a Human to Machine-Oriented Vision of Information;56
5.3.2.1;2.1 Usage Scenario;58
5.3.3;3 Architecture Overview;58
5.3.3.1;3.1 Work.ow Scenario;61
5.3.4;4 Knowledge Acquisition;61
5.3.5;5 Features Extraction;62
5.3.5.1;5.1 Relevance Measurement of the Features;62
5.3.5.2;Collection of RDF pages:;63
5.3.5.3;Collection of schemas or dictionaries:;63
5.3.5.4;Dictionaries related to the current RDF page:;63
5.3.5.5;Accuracy:;63
5.3.5.6;Instance Relevance:;64
5.3.5.7;Property Relevance:;64
5.3.6;6 Rule-based Classi.cation;66
5.3.6.1;6.1 Clustering of RDF Pages;66
5.3.6.2;6.2 Rules Generation;67
5.3.6.3;If;67
5.3.6.4;then;67
5.3.7;7 Experimental Results;69
5.3.8;8 Conclusions;71
5.3.9;References;72
5.4;A Genetic Programming Approach for Combining Structural and Citation-Based Evidence for Text Classi.cation in Web Digital Libraries;74
5.4.1;1 Introduction;74
5.4.2;2 Background;76
5.4.3;3 Our Approach;77
5.4.3.1;3.1 GP System Con.gurations;77
5.4.3.2;Algorithm 1:;77
5.4.3.3;3.2 Used Terminals;78
5.4.3.4;Structural Similarity Measures;78
5.4.3.5;Citation-based Similarity Measures;79
5.4.4;4 The Framework for Classi.cation;81
5.4.5;5 Experiments;82
5.4.5.1;5.1 Sampling;83
5.4.5.2;5.2 Baselines;84
5.4.5.3;5.3 Experimental Set Up;85
5.4.5.4;5.4 Experimental Results;85
5.4.6;6 Related Work;87
5.4.7;7 Conclusion;88
5.4.8;Acknowledgements;88
5.4.9;References;89
6;Part II Semantic Web;93
6.1;Adding a Trust Layer to Semantic Web Metadata;94
6.1.1;1 Introduction;94
6.1.2;2 The Architecture;95
6.1.2.1;2.1 The Metadata Format;97
6.1.2.2;2.2 Modelling User Behavior in Implicit Voting;100
6.1.2.3;2.3 Trust Assertions’ Format;101
6.1.3;3 The Reputation Computation Problem;103
6.1.3.1;3.1 Choice of the Aggregation Operator;104
6.1.3.2;De.nition 1.;104
6.1.3.3;A1;105
6.1.3.4;A2;105
6.1.3.5;A3;105
6.1.3.6;p;105
6.1.3.7;w;105
6.1.3.8;3.2 The WOWA Operator;105
6.1.3.9;De.nition 2.;105
6.1.3.10;p;105
6.1.3.11;w;105
6.1.3.12;p;105
6.1.3.13;w;105
6.1.3.14;p;106
6.1.3.15;w,;106
6.1.3.16;a,;106
6.1.3.17;w;106
6.1.3.18;a;106
6.1.3.19;w;106
6.1.3.20;p;106
6.1.3.21;w;106
6.1.3.22;p;106
6.1.3.23;w;107
6.1.3.24;p;107
6.1.3.25;3.3 An Example;107
6.1.3.26;w;107
6.1.3.27;The Di.dent Approach;107
6.1.3.28;a;107
6.1.3.29;w;107
6.1.3.30;wn;107
6.1.3.31;p=[;108
6.1.3.32;The Con.dent Approach;109
6.1.3.33;a;109
6.1.3.34;wn;109
6.1.4;4 Conclusions;109
6.1.5;Acknowledgments;110
6.1.6;References;110
6.2;A Fuzzy Linguistic Multi-agent Model Based on Semantic Web Technologies and User Pro.les;112
6.2.1;1 Introduction;112
6.2.2;2 Methodological Tools;114
6.2.2.1;2.1 Fuzzy Linguistic Tools;114
6.2.2.2;2.2 Filtering Techniques;115
6.2.2.3;2.3 Semantic Web Technologies;116
6.2.3;3 The Fuzzy Linguistic Multi-agent Model Based on Semantic Web and User Pro.les;116
6.2.3.1;Semantic Retrieval Phase:;117
6.2.3.2;Feedback Phase:;118
6.2.3.3;3.1 Feedback Phase: User Pro.le Updating Process;118
6.2.3.4;Step 1:;121
6.2.3.5;Step 2:;121
6.2.3.6;Step 3:;121
6.2.3.7;3.2 Feedback Phase: Recommendation Process;121
6.2.3.8;Step 1:;123
6.2.3.9;Step 2:;123
6.2.4;4 Example;123
6.2.5;5 Concluding Remarks;124
6.2.6;References;125
6.3;Fuzzy Concept-Based Models in Information Browsers;128
6.3.1;1 Introduction;128
6.3.2;2 Fuzziness in Concept Browsers;130
6.3.2.1;2.1 A Basic Model for Resources and Their Annotations;130
6.3.2.2;2.2 Fuzzy Elements in the Implementation;134
6.3.2.3;of Ontology-Guided Tactics;134
6.3.3;3 A Semantic Web Implementation of a Fuzzy Generic Concept Browser;134
6.3.4;4 Conclusions and Future Work;139
6.3.5;References;139
6.4;Evaluation of Term-based Queries using Possibilistic Ontologies;142
6.4.1;1 Introduction;142
6.4.2;2 From Fuzzy to Qualitative Pattern Matching;143
6.4.2.1;2.1 Fuzzy Pattern Matching;143
6.4.2.2;2.2 Possibilistic Ontology;145
6.4.2.3;2.3 Qualitative Pattern Matching;148
6.4.2.4;2.4 Other Approaches Using Ontologies;149
6.4.3;3 Using Qualitative Pattern Matching on a Database;151
6.4.3.1;Description of the;151
6.4.3.2;Platform;151
6.4.3.3;Used Ontologies;151
6.4.3.4;Examples of Queries;153
6.4.4;4 Retrieving Titles Using Qualitative Pattern Matching;157
6.4.4.1;4.1 Data Description;158
6.4.4.2;4.2 Examples of Queries;158
6.4.4.3;4.3 Evaluation and Results;159
6.4.5;5 Toward an Extension of the Approach to Full-text IR;163
6.4.5.1;5.1 Possibilistic Indexing;163
6.4.5.2;5.2 Query Evaluation;164
6.4.6;6 Conclusion;165
6.4.7;References;166
7;Part III Web Information Retrieval;168
7.1;Formal Theory of Connectionist Web Retrieval;169
7.1.1;1 Introduction;169
7.1.2;2 Connectionist Web Information Retrieval;171
7.1.2.1;2.1 Arti.cial Neural Network;171
7.1.2.2;Theorem 1.;172
7.1.2.3;2.2 Information Retrieval Using Multi-Layered;174
7.1.2.4;Arti.cial Neural Networks;174
7.1.2.5;2.3 Arti.cial Neural Network-based Web Retrieval –;177
7.1.2.6;A Literature Overview;177
7.1.3;3 Formal Theory of Connectionist Web Retrieval;180
7.1.3.1;3.1 PageRank;180
7.1.3.2;3.2 Authorities and Hubs;181
7.1.3.3;3.3 Interaction Information Retrieval;182
7.1.3.4;3.4 Interaction Information Retrieval: Particular Case;183
7.1.3.5;of the Generic Equation;183
7.1.3.6;3.5 PageRank: Particular Case of the Generic Equation;185
7.1.3.7;3.6 Hubs and Authorities: Particular Case;186
7.1.3.8;of the Generic Equation;186
7.1.4;4 Computational Complexity;187
7.1.5;in Connectionist Web Retrieval;187
7.1.5.1;4.1 Basic Concepts;187
7.1.5.2;4.2 Computational Complexity in Soft Computing-based;188
7.1.5.3;Information Retrieval – A Literature Overview;188
7.1.5.4;4.3 Computational Complexity;192
7.1.5.5;of Winner-Take-All-based Retrieval;192
7.1.5.6;Theorem 2.;192
7.1.5.7;Theorem 3.;192
7.1.5.8;Theorem 4.;192
7.1.5.9;Theorem 5.;193
7.1.6;5 Conclusions;195
7.1.7;Acknowledgements;196
7.1.8;References;196
7.2;Semi-fuzzy Quantifiers for Information Retrieval;201
7.2.1;1 Introduction;201
7.2.2;2 Related Work;203
7.2.3;3 Semi-fuzzy Quanti.ers for Information Retrieval;204
7.2.3.1;De.nition 1 (fuzzy quanti.er).;204
7.2.3.2;De.nition 2 (semi-fuzzy quanti.er).;205
7.2.3.3;De.nition 3 (quanti.er fuzzi.cation mechanism).;206
7.2.3.4;De.nition 4 (;206
7.2.3.5;cut).;206
7.2.3.6;3.1 Query Language;208
7.2.3.7;3.2 Semantics;208
7.2.3.8;3.3 Example;209
7.2.4;4 Semi-fuzzy Quanti.ers and OWA Quanti.cation;210
7.2.4.1;4.1 Linguistic Quanti.cation using OWA Operators;210
7.2.4.2;4.2 Linguistic Quanti.cation using SFQ;211
7.2.4.3;4.3 Remarks;213
7.2.5;5 Experiments;214
7.2.5.1;5.1 Experiments:;216
7.2.5.2;5.2 Experiments: Pivoted Document Length Normalization;220
7.2.6;6 Conclusions and Further Work;222
7.2.7;Acknowledgements;223
7.2.8;References;223
7.2.9;Appendix A;225
7.2.9.1;weights;226
7.2.9.2;pivoted weights;226
7.3;Helping Users in Web Information Retrieval Via Fuzzy Association Rules;227
7.3.1;1 Introduction;227
7.3.2;2 Query Re.nement;228
7.3.3;3 Association Rules and Fuzzy Association Rules;229
7.3.3.1;3.1 Association Rules;230
7.3.3.2;3.2 Fuzzy Association Rules;230
7.3.3.3;3.3 Measures for Association and Fuzzy Association Rules;231
7.3.4;4 Query Re.nement via Fuzzy Association Rules;232
7.3.5;5 Document Representation for Association Rule Extraction;233
7.3.5.1;5.1 Text Transactions;234
7.3.5.2;Fuzzy Text Transactions;234
7.3.6;6 Extraction of Fuzzy Association Rules;235
7.3.6.1;Algorithm 1;235
7.3.6.2;6.1 The Selection of Terms for Query Re.nement;236
7.3.7;7 Experimental Examples;237
7.3.8;8 Conclusions and Future Work;240
7.3.9;Acknowledgements;240
7.3.10;References;240
7.4;Combining Soft and Hard Techniques for the Analysis of Batch Retrieval Tasks;244
7.4.1;1 Introduction: a Prototypical Batch Retrieval Task;244
7.4.1.1;The Statement of the Task;245
7.4.1.2;Making Some Hypotheses Explicit;246
7.4.1.3;Hypothesis 1 (Conjunctive querying).;246
7.4.1.4;Hypothesis 2 (Disjunctive querying).;247
7.4.1.5;A Decomposition of the Problem;247
7.4.1.6;Problem 1.;247
7.4.1.7;Problem 2.;248
7.4.1.8;Problem 3.;248
7.4.2;2 A Perfect Information Retrieval System;248
7.4.2.1;Galois Connections and Adjunctions;248
7.4.2.2;De.nition 1.;248
7.4.2.3;Proposition 1 (Polarity).;248
7.4.2.4;Proposition 2 (Axiality).;249
7.4.2.5;The Polarity of Conjunctive Querying;249
7.4.2.6;Theorem 1 (Basic theorem on Concept Lattices ([8], p. 20)).;250
7.4.2.7;Gathering Results: the Solution to Problem 1;250
7.4.3;3 Relevance-Induced Analysis of Retrieval Systems;251
7.4.3.1;Equivalences and Partitions De.ned by Relevance Relations;252
7.4.3.2;Rough Set Analysis of Relevance;252
7.4.3.3;An Example: the Relevance Lattice of a TREC Task;254
7.4.4;4 Designing the Description Mappings;256
7.4.4.1;Constraints for the Description Mappings;256
7.4.4.2;A Solution: Infomorphisms;257
7.4.5;5 Related Work and Discussion;258
7.4.6;Acknowledgements;260
7.4.7;References;260
8;Part IV Web Application;262
8.1;Search Advertising;263
8.1.1;1 Introduction;263
8.1.2;2 Basic Concepts;266
8.1.2.1;2.1 Keyword-targeted Advertising;266
8.1.2.2;2.2 Content-targeted Advertising;267
8.1.2.3;2.3 The Search Advertising Network;268
8.1.2.4;The Users;270
8.1.2.5;The Advertisers;271
8.1.2.6;The Publishers;271
8.1.3;3 Search Advertising Systems;272
8.1.3.1;3.1 Relevance Matching;274
8.1.3.2;dj;277
8.1.3.3;dj);277
8.1.3.4;dj).;278
8.1.3.5;3.2 Ranking;279
8.1.3.6;3.3 Fraud Detection;281
8.1.3.7;3.4 Measurements and Feedback;282
8.1.4;4 Conclusions;285
8.1.5;References;285
8.2;Information Loss in Continuous Hybrid Microdata: Subdomain-Level Probabilistic Measures;290
8.2.1;1 Introduction;290
8.2.1.1;1.1 Contribution and Plan of This Paper;291
8.2.2;2 A Low-cost Method for Hybrid Microdata Generation;292
8.2.2.1;Algorithm 1 (Basic Procedure);292
8.2.2.2;Algorithm 2 (Modi.cation of Matrix;293
8.2.3;3 Properties of the Proposed Scheme;294
8.2.3.1;3.1 Performance and Complexity;294
8.2.3.2;3.2 Data Utility;294
8.2.4;4 A Generic Information Loss Measure;295
8.2.5;5 Empirical Work;296
8.2.5.1;5.1 Information Loss and Disclosure Risk Measures;296
8.2.5.2;5.2 The Data Set;296
8.2.5.3;5.3 The Results;297
8.2.5.4;Results on the Overall Dataset;297
8.2.5.5;Top-down Generation: Posterior Subdomains;297
8.2.5.6;Bottom-up Generation: Prior Subdomains;298
8.2.6;6 Conclusions and Future Research;298
8.2.7;Acknowledgments;300
8.2.8;References;300
8.3;Access to a Large Dictionary of SpanishSynonyms: A Tool for Fuzzy InformationRetrieval.;302
8.3.1;1 Introduction;302
8.3.2;2 A Short Historical Introduction to Synonymy;306
8.3.3;3 A Computational View of Synonymy;307
8.3.4;4 General Architecture of an Electronic Dictionary;310
8.3.5;of Synonyms;310
8.3.6;5 Improving the Dictionary;312
8.3.7;6 Stand-alone Use of FDSA;314
8.3.7.1;The electronic dictionaries.;315
8.3.7.2;The algorithms that calculate the degrees of synonymy and;315
8.3.7.3;antonymy.;315
8.3.7.4;The graphical user interface.;316
8.3.8;7 Conclusions;317
8.3.9;References;318
9;More eBooks at www.ciando.com;0



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.