Hüllermeier | Case-Based Approximate Reasoning | Buch | 978-1-4020-5694-9 | sack.de

Buch, Englisch, 372 Seiten, Format (B × H): 164 mm x 245 mm, Gewicht: 1590 g

Reihe: Theory and Decision Library B

Hüllermeier

Case-Based Approximate Reasoning


2007. Auflage 2007
ISBN: 978-1-4020-5694-9
Verlag: Springer

Buch, Englisch, 372 Seiten, Format (B × H): 164 mm x 245 mm, Gewicht: 1590 g

Reihe: Theory and Decision Library B

ISBN: 978-1-4020-5694-9
Verlag: Springer


Case-based reasoning (CBR) has received a great deal of attention in recent years and has established itself as a core methodology in the field of artificial intelligence. The key idea of CBR is to tackle new problems by referring to similar problems that have already been solved in the past. More precisely, CBR proceeds from individual experiences in the form of cases. The generalization beyond these experiences typically relies on a kind of regularity assumption demanding that 'similar problems have similar solutions'.

Making use of different frameworks of approximate reasoning and reasoning under uncertainty, notably probabilistic and fuzzy set-based techniques, this book develops formal models of the above inference principle, which is fundamental to CBR. The case-based approximate reasoning methods thus obtained especially emphasize the heuristic nature of case-based inference and aspects of uncertainty in CBR. This way, the book contributes to a solid foundation of CBR which is grounded on formal concepts and techniques from the aforementioned fields. Besides, it establishes interesting relationships between CBR and approximate reasoning, which not only cast new light on existing methods but also enhance the development of novel approaches and hybrid systems.

This books is suitable for researchers and practioners in the fields of artifical intelligence, knowledge engineering and knowledge-based systems.

Hüllermeier Case-Based Approximate Reasoning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Similarity and Case-Based Inference.- Constraint-Based Modeling of Case-Based Inference.- Probabilistic Modeling of Case-Based Inference.- Fuzzy Set-Based Modeling of Case-Based Inference I.- Fuzzy Set-Based Modeling of Case-Based Inference II.- Case-Based Decision Making.- Conclusions and Outlook.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.