Hutter / Servedio / Takimoto | Algorithmic Learning Theory | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 4754, 406 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Hutter / Servedio / Takimoto Algorithmic Learning Theory

18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings
2007
ISBN: 978-3-540-75225-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings

E-Book, Englisch, Band 4754, 406 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-75225-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4, 2007, co-located with the 10th International Conference on Discovery Science, DS 2007. The 25 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 50 submissions. They are dedicated to the theoretical foundations of machine learning.

Hutter / Servedio / Takimoto Algorithmic Learning Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Editors’ Introduction.- Editors’ Introduction.- Invited Papers.- A Theory of Similarity Functions for Learning and Clustering.- Machine Learning in Ecosystem Informatics.- Challenge for Info-plosion.- A Hilbert Space Embedding for Distributions.- Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity and Creativity.- Invited Papers.- Feasible Iteration of Feasible Learning Functionals.- Parallelism Increases Iterative Learning Power.- Prescribed Learning of R.E. Classes.- Learning in Friedberg Numberings.- Complexity Aspects of Learning.- Separating Models of Learning with Faulty Teachers.- Vapnik-Chervonenkis Dimension of Parallel Arithmetic Computations.- Parameterized Learnability of k-Juntas and Related Problems.- On Universal Transfer Learning.- Online Learning.- Tuning Bandit Algorithms in Stochastic Environments.- Following the Perturbed Leader to Gamble at Multi-armed Bandits.- Online Regression Competitive with Changing Predictors.- Unsupervised Learning.- Cluster Identification in Nearest-Neighbor Graphs.- Multiple Pass Streaming Algorithms for Learning Mixtures of Distributions in .- Language Learning.- Learning Efficiency of Very Simple Grammars from Positive Data.- Learning Rational Stochastic Tree Languages.- Query Learning.- One-Shot Learners Using Negative Counterexamples and Nearest Positive Examples.- Polynomial Time Algorithms for Learning k-Reversible Languages and Pattern Languages with Correction Queries.- Learning and Verifying Graphs Using Queries with a Focus on Edge Counting.- Exact Learning of Finite Unions of Graph Patterns from Queries.- Kernel-Based Learning.- Polynomial Summaries of Positive Semidefinite Kernels.- Learning Kernel Perceptrons on Noisy Data Using Random Projections.- Continuity of Performance Metrics for Thin Feature Maps.- Other Directions.- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability.- Pseudometrics for State Aggregation in Average Reward Markov Decision Processes.- On Calibration Error of Randomized Forecasting Algorithms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.