Buch, Englisch, 784 Seiten
Buch, Englisch, 784 Seiten
ISBN: 978-1-394-29454-1
Verlag: Wiley
An expert compilation of on-device training techniques, regulatory frameworks, and ethical considerations of TinyML design and development
In Tiny Machine Learning: Design Principles and Applications, a team of distinguished researchers delivers a comprehensive discussion of the critical concepts, design principles, applications, and relevant issues in Tiny Machine Learning (TinyML). Expert contributors introduce a new low power resource, offering vast applications in IoT devices with system-algorithm co-design.
Tiny Machine Learning explores TinyML paradigms and enablers, TinyML for anomaly detection, and the learning panorama under TinyML. Readers will find explanations of TinyML devices and tools, power consumption and memory in IoT microcontrollers, and lightweight frameworks for TinyML. The book also describes TinyML techniques for real-time and environmental applications.
Additional topics covered in the book include: - A thorough introduction to security and privacy techniques for TinyML devices, including the implementation of novel security schemes
- Incisive explorations of power consumption and memory in IoT MCUs, including ultralow-power smart IoT devices with embedded TinyML
- Practical discussions of TinyML research targeting microcontrollers for data extraction and synthesis
Perfect for industry and academic researchers, scientists, and engineers, Tiny Machine Learning will also benefit lecturers and graduate students interested in machine learning.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
About the Editors xxiii
List of Contributors xxvii
Preface xxxv
1 Introduction to TinyML 1
Francisca Onyiyechi Nwokoma, Chidi Ukamaka Betrand, Juliet Nnenna Odii, Euphemia Chioma Nwokorie, and Ikechukwu Ignatius Ayogu
2 Learning Panorama Under TinyML 35
Ikechukwu Ignatius Ayogu, Euphemia Chioma Nwokorie, Juliet Nnenna Odii, Francisca Onyiyechi Nwokoma, and Chidi Ukamaka Betrand
3 TinyML for Anomaly Detection 85
Richard Govada Joshua, Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, and Samuel Oluwatobi Tofade
4 TinyML Power Consumption and Memory in IoT MCUs 163
Peter Anuoluwapo Gbadega, Agbotiname Lucky Imoize, Richard Govada Joshua, and Samuel Oluwatobi Tofade
5 Efficient Data Cleaning and Anomaly Detection in IoT Devices Using TinyCleanEDF 205
Ilker Kara
6 TinyML Devices and Tools 225
Abeeb Akorede Bello, Agbotiname Lucky Imoize, and Abiodun Temitope Odewale
7 Privacy-Preserving Techniques in TinyML for IoT 259
Oleksandr Kuznetsov, Emanuele Frontoni, Kateryna Kuznetsova, Marco Arnesano, and Pavlo Usik
8 Enhancing Cybersecurity in TinyML with Lightweight Cryptographic Algorithms 303
Oleksandr Kuznetsov, Roman Minailenko, Aigul Shaikhanova, Yelyzaveta Kuznetsova, and Agbotiname Lucky Imoize
9 Tiny Machine Learning for Enhanced Edge Intelligence 335
Emmanuel Alozie, Agbotiname Lucky Imoize, Hawau I. Olagunju, Nasir Faruk, Salisu Garba, and Ayobami P. Olatunji
10 Advanced Security Schemes for TinyML Devices 367
Wasswa Shafik and Mumin Adam
11 Robust Ground Truth Data Mining for Enhanced Privacy and Accuracy in Noisy TinyML Environments 403
Yuichi Sei and Agbotiname Lucky Imoize
12 Security and Privacy of TinyML Devices 431
Eftychia Mistillioglou, Evangelia Konstantopoulou, Nicolas Sklavos, and Andronikos Kyriakou
13 Semantic Management of TinyML for Industrial Application 469
Kinzah Noor, Hasnain Ahmad, and Agbotiname Lucky Imoize
14 Fight Poison with Poison: Tiny Machine Learning Resilience Against Poisoning Attacks 503
Tomoki Chiba, Yasuyuki Tahara, Akihiko Ohsuga, Agbotiname Lucky Imoize, and Yuichi Sei
15 TinyML for Real-Time Medical Image Classification and Diagnosis 549
Jelil O. Agbo-Ajala, Lateef A. Akinyemi, Olufisayo S. Ekundayo, and Ernest Mnkandla
16 Biometric Authentication in TinyML: Opportunities and Challenges 587
Oleksandr Kuznetsov, Emanuele Frontoni, Marco Arnesano, Oleksii Smirnov, and Boris Khruskov
17 Secure Deployment of TinyML Applications: Strategies and Practices 635
Oleksandr Kuznetsov, Sergii Kavun, and Gulvira Bekeshova
18 TinyML for Environmental Applications 665
Duy Nam Khanh Vu and Anh Khoa Dang
19 Benchmarking TinyML Encrypted Federated Learning with Secret Sharing in Medical Computer Vision 701
Ruduan B.F. Plug, Putu H.P. Jati, Samson Y. Amare, and Mirjamvan Reisen
References 716
Index 721




