Inchausti | Statistical Modeling with R | Buch | 978-0-19-285901-3 | www.sack.de

Buch, Englisch, 480 Seiten, Format (B × H): 203 mm x 244 mm, Gewicht: 1202 g

Inchausti

Statistical Modeling with R

A Dual Frequentist and Bayesian Approach for Life Scientists
Erscheinungsjahr 2023
ISBN: 978-0-19-285901-3
Verlag: Oxford University Press

A Dual Frequentist and Bayesian Approach for Life Scientists

Buch, Englisch, 480 Seiten, Format (B × H): 203 mm x 244 mm, Gewicht: 1202 g

ISBN: 978-0-19-285901-3
Verlag: Oxford University Press


To date, statistics has tended to be neatly divided into two theoretical approaches or frameworks: frequentist (or classical) and Bayesian. Scientists typically choose the statistical framework to analyse their data depending on the nature and complexity of the problem, and based on their personal views and prior training on probability and uncertainty. Although textbooks and courses should reflect and anticipate this dual reality, they rarely do so. This accessible textbook explains, discusses, and applies both the frequentist and Bayesian theoretical frameworks to fit the different types of statistical models that allow an analysis of the types of data most commonly gathered by life scientists. It presents the material in an informal, approachable, and progressive manner suitable for readers with only a basic knowledge of calculus and statistics.

Statistical Modeling with R is aimed at senior undergraduate and graduate students, professional researchers, and practitioners throughout the life sciences, seeking to strengthen their understanding of quantitative methods and to apply them successfully to real world scenarios, whether in the fields of ecology, evolution, environmental studies, or computational biology.

Inchausti Statistical Modeling with R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Part 1: The Conceptual Basis For Fitting Statistical Models

- 1: General introduction

- 2: Statistical modeling: a short historical background

- 3: Estimating parameters: the main purpose of statistical inference

- Part II: Applying The Generalized Linear Model to Varied Data Types

- 4: The General Linear Model I: numerical explanatory variables

- 5: The General Linear Model II: categorical explanatory variables

- 6: The General Linear Model III: interactions between explanatory variables

- 7: Model selection: one, two, and more models fitted to the data

- 8: The Generalized Linear Model

- 9: When the response variable is binary

- 10: When the response variables are counts, often with many zeros

- 11: Further issues involved in the modeling of counts

- 12: Models for positive real-valued response variables: proportions and others

- Part III: Incorporating Experimental and Survey Design Using Mixed Models

- 13: Accounting for structure in mixed/hierachical structures

- 14: Experimental design in the life sciences - the basics

- 15: Mixed-hierachical models and experimental design data

- Afterword

- R packages used in the book

- Appendix 1: Using R and RStudio: the basics (only available online at www.oup.com/companion/InchaustiSMWR)

- Appendix 2: Exploring and describing the evidence in graphics (only available online at www.oup.com/companion/InchaustiSMWR)


Pablo Inchausti is Professor of Ecology at the Universidad de la República, Centro Universitario Regional del Este, Uruguay. He is the co-editor of the influential and highly-cited book Biodiversity and Ecosystem Functioning: synthesis and perspectives (OUP, 2002) and has been successfully teaching statistics and mathematical modelling to students of the life and social sciences for over 15 years.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.