E-Book, Englisch, Band Volume 74, 394 Seiten
Reihe: Current Topics in Membranes
Islas / Qin Thermal Sensors
1. Auflage 2014
ISBN: 978-0-12-800448-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 74, 394 Seiten
Reihe: Current Topics in Membranes
ISBN: 978-0-12-800448-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume presents an up to date presentation of current knowledge and problems in the field of thermal receptors. This is a rapidly evolving research area and the book contains important contributions from some of the leaders in the field. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
Autoren/Hrsg.
Weitere Infos & Material
1;Front
Cover;1
2;CURRENT TOPICS IN MEMBRANES, VOLUME 74;3
3;Current Topics in Membranes;4
4;Copyright;5
5;CONTENTS;6
6;CONTRIBUTORS;10
7;PREFACE;14
8;PREVIOUS VOLUMES IN SERIES;16
9;Chapter One - Thermal Effects and Sensitivity of Biological Membranes;20
9.1;1. INTRODUCTION;20
9.2;2. RESPONSE OF ORGANISMS TO CHANGES IN TEMPERATURE;21
9.3;3. GENERAL THERMAL DEPENDENCE OF MEMBRANE PROPERTIES;24
9.4;4. PYROELECTRICITY;28
9.5;5. INFRA RED RADIATION AND CAPACITANCE;29
9.6;6. ACTIVATION OF SPECIFIC CHANNELS BY IR;31
9.7;7. CONCLUSIONS;32
9.8;ACKNOWLEDGMENTS;32
9.9;REFERENCES;32
10;Chapter Two - Temperature Sensing by Thermal TRP Channels: Thermodynamic Basis and Molecular Insights;38
10.1;1. INTRODUCTION;39
10.2;2. PRINCIPLES OF TEMPERATURE ACTIVATION;41
10.3;3. TEMPERATURE DEPENDENCE OF THERMAL TRP CHANNELS;43
10.4;4. KINETICS AND ENERGETICS OF THERMAL CHANNELS;46
10.5;5. HYSTERESIS OF TEMPERATURE-DEPENDENT GATING;49
10.6;6. HEAT CAPACITY THEORY;51
10.7;7. ORIGINS OF THERMAL SENSITIVITY;54
10.8;8. DISTRIBUTION OF THERMAL SENSITIVITY: GLOBAL OR LOCAL?;56
10.9;9. IDENTIFICATION OF MOLECULAR BASIS OF THERMAL SENSITIVITY;59
10.10;10. SUMMARY;65
10.11;REFERENCES;65
11;Chapter Three - Gating of Thermally Activated Channels;70
11.1;1. INTRODUCTION;71
11.2;2. TEMPERATURE-SENSITIVE CHANNEL DIVERSITY;74
11.3;3. ENERGETICS OF TEMPERATURE-SENSITIVE CHANNELS;80
11.4;4. GATING KINETICS IN THERMOTRP CHANNELS;86
11.5;5. MOLECULAR DETERMINANTS OF TEMPERATURE SENSING IN TRP CHANNELS;91
11.6;6. CODA;97
11.7;ACKNOWLEDGMENTS;99
11.8;REFERENCES;99
12;Chapter Four - TRPA1 Channels: Chemical and Temperature Sensitivity;108
12.1;1. INTRODUCTION;109
12.2;2. ACTIVATION AND REGULATION OF TRPA1 BY CHEMICAL COMPOUNDS;110
12.3;3. TEMPERATURE SENSITIVITY OF TRPA1;120
12.4;ACKNOWLEDGMENTS;126
12.5;REFERENCES;126
13;Chapter Five - Temperature Sensitivity of Two-Pore (K2P) Potassium Channels;132
13.1;1. INTRODUCTION;133
13.2;PHYSIOLOGICAL ROLE OF HEAT-ACTIVATED K2P CHANNELS;134
13.3;3. MOLECULAR MECHANISM OF TEMPERATURE GATING OF TREK-1, TREK-2, AND TRAAK;136
13.4;4. HEAT- AND MECHANOSENSITIVITY OF K2PS: DIFFERENT FACETS OF THE SAME PROCESS?;143
13.5;5. FUTURE STUDIES OF K2P CHANNEL THERMAL SENSITIVITY;144
13.6;ACKNOWLEDGMENTS;146
13.7;REFERENCES;146
14;Chapter Six - Lipid Modulation of Thermal Transient Receptor Potential Channels;154
14.1;1. INTRODUCTION;155
14.2;2. PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE (PIP2);158
14.3;3. GPCR SIGNALING PATHWAYS;167
14.4;4. N-3 PUFAS AND DERIVATIVES;174
14.5;5. OXIDIZED LIPIDS;176
14.6;6. LYSOPHOSPHOLIPIDS;177
14.7;7. CHOLESTEROL AND STEROIDS;179
14.8;8. OTHER LIPIDS;181
14.9;9. CONCLUDING REMARKS;182
14.10;ACKNOWLEDGMENTS;183
14.11;REFERENCES;183
15;Chapter Seven - Structure of Thermally Activated TRP Channels;200
15.1;1. INTRODUCTION;201
15.2;2. TRP CHANNELS AS THERMAL SENSORS;203
15.3;3. OUTLOOK AND PROSPECTIVE;222
15.4;REFERENCES;223
16;Chapter Eight - Thermal Sensitivity of CLC and TMEM16 Chloride Channels and Transporters;232
16.1;1. INTRODUCTION;232
16.2;2. THERMAL NOCICEPTION;233
16.3;3. TMEM16A;234
16.4;4. CLC PROTEINS;238
16.5;5. CONCLUSIONS;245
16.6;ACKNOWLEDGMENTS;245
16.7;REFERENCES;245
17;Chapter Nine - Structure and Function of the ThermoTRP Channel Pore;252
17.1;1. INTRODUCTION;253
17.2;2. STRUCTURAL FEATURES OF A THERMOTRP CHANNEL PORE;254
17.3;3. FUNCTIONAL TESTS OF PORE STRUCTURES;257
17.4;4. ACTIVATION GATING OF TRPV1;262
17.5;5. PORE DILATION;269
17.6;6. CONCLUDING REMARKS;271
17.7;ACKNOWLEDGMENTS;272
17.8;REFERENCES;272
18;Chapter Ten - Temperature-Sensitive Gating of Voltage-Gated Proton Channels;278
18.1;1. INTRODUCTION;279
18.2;2. PROPERTIES AND PHYSIOLOGICAL FUNCTIONS OF HV;280
18.3;3. THERMOSENSITIVE FUNCTIONS OF CELLS EXPRESSING HV;285
18.4;4. TEMPERATURE DEPENDENCE OF NATIVE HV;288
18.5;5. MOLECULAR STRUCTURE OF HV1/VSOP;289
18.6;6. THERMAL STABILITY OF THE COILED-COIL DOMAIN AND THE THERMAL SENSITIVITY OF HV;296
18.7;7. MODEL OF THERMOSENSITIVE CHANNEL GATING;305
18.8;REFERENCES;307
19;Chapter Eleven - Intimacies and Physiological Role of the Polymodal Cold-Sensitive Ion Channel TRPM8;312
19.1;1. INTRODUCTION;313
19.2;2. TRPM8, A COLD-ACTIVATED POLYMODAL ION CHANNEL;313
19.3;3. PHYSIOLOGICAL ROLE OF TRPM8;319
19.4;4. TRAFFICKING, N-GLYCOSYLATION AND MODULATION OF TRPM8 CHANNEL FUNCTION;327
19.5;5. CONCLUSIONS;336
19.6;ACKNOWLEDGMENTS;336
19.7;REFERENCES;337
20;Chapter Twelve - Thermally Activated TRPV3 Channels;344
20.1;1. INTRODUCTION;345
20.2;2. EXPRESSION AND FUNCTION OF TRPV3;347
20.3;3. TRPV3 ACTIVATORS;360
20.4;4. TRPV3 REGULATORS;368
20.5;5. CONCLUSIONS;374
20.6;ACKNOWLEDGMENTS;374
20.7;REFERENCES;375
21;Index;384
22;COLOR PLATES;396
Temperature Sensing by Thermal TRP Channels
Thermodynamic Basis and Molecular Insights
Abstract
All organisms need to sense temperature in order to survive and adapt. But how they detect and perceive temperature remains poorly understood. Recent discoveries of thermal Transient Receptor Potential (TRP) ion channels have shed light on the problem and unravel molecular entities for temperature detection and transduction in mammals. Thermal TRP channels belong to the large family of transient receptor potential channels. They are directly activated by heat or cold in physiologically relevant temperature ranges, and the activation is exquisitely sensitive to temperature changes. Thermodynamically, this strong temperature dependence of thermal channels occurs due to large enthalpy and entropy changes associated with channel opening. Thus understanding how the channel proteins obtain their exceptionally large energetics is central toward determining functional mechanisms of thermal TRP channels. The purpose of this chapter is to provide a comprehensive review on critical issues and challenges facing the problem, with emphases on underlying biophysical and molecular mechanisms.
Keywords
Temperature-dependent gating; Temperature sensor; Thermal receptors; TRP channels
1. Introduction
2. Principles of Temperature Activation
o=11+e?GRT
o=11+e?HRT-?SR.




