Jiang | Toward Trustworthy Adaptive Learning | Buch | 978-1-032-95495-0 | sack.de

Buch, Englisch, 234 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 508 g

Reihe: Assessment of Educational Technology

Jiang

Toward Trustworthy Adaptive Learning

Explainable Learner Models
1. Auflage 2025
ISBN: 978-1-032-95495-0
Verlag: Taylor & Francis Ltd (Sales)

Explainable Learner Models

Buch, Englisch, 234 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 508 g

Reihe: Assessment of Educational Technology

ISBN: 978-1-032-95495-0
Verlag: Taylor & Francis Ltd (Sales)


This book offers an in-depth exploration of explainable learner models, presenting theoretical foundations and practical applications in the context of educational AI. It aims to provide readers with a comprehensive understanding of how these models can enhance adaptive learning systems.

Chapters cover a wide range of topics, including the development and optimization of explainable learner models, the integration of these models into adaptive learning systems, and their implications for educational equity. It also discusses the latest advancements in AI explainability techniques, such as pre-hoc and post-hoc explainability, and their application in intelligent tutoring systems. Lastly, the book provides practical examples and case studies to illustrate how explainable learner models can be implemented in real-world educational settings.

This book is an essential resource for researchers, educators, and practitioners interested in the intersection of AI and education. It offers valuable insights for those looking to integrate explainable AI into their educational practices, as well as for policymakers focused on promoting equitable and transparent learning environments.

Jiang Toward Trustworthy Adaptive Learning jetzt bestellen!

Zielgruppe


Professional Practice & Development, Professional Reference, and Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Table of Contents

Preface 

Authors

Contributors

Section I. Explainable Learner Models: An Overview

1.     Trustworthy AI for Adaptive Learning

2.     Explainable Learner Models: Concepts, Classifications, and Datasets

3.     Construction and Interpretation of Explainable Models: A Case Study on BKT

Section II. Research on Ante-hoc Explainability Learner Models

4.     Interpretable Cognitive State Prediction via Temporal Fuzzy Cognitive Map

5.     Improving the performance and explainability of knowledge tracing via Markov blanket

6.     Knowledge Tracing within Single Programming Practice Using Problem-Solving Process Data

Section III. Research on Post-hoc Explainability Learner Models

7.     Understanding the relationship between computational thinking and computational participation

8.     Understanding students’ backtracking behaviour in digital textbooks: a data-driven perspective

Section IV. Toward Trustworthy Adaptive Learning

9.     Frameworks for Explainable Learner Models

10.  Frameworks for Trustworthy AI for Adaptive Learning

Index


Bo Jiang is an associate professor at East China Normal University, China. His research interests include intelligent tutoring technologies, computational thinking education, and AI education. He holds academic positions as an executive committee member of the Asia-Pacific Society for Computers in Education (APSCE) and a youth committee member of the Chinese Association for Artificial Intelligence.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.