Johnson / Kuhn | Applied Predictive Modeling | Buch | 978-1-4939-7936-3 | sack.de

Buch, Englisch, 600 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 920 g

Johnson / Kuhn

Applied Predictive Modeling


Softcover Nachdruck of the original 1. Auflage 2013
ISBN: 978-1-4939-7936-3
Verlag: Springer

Buch, Englisch, 600 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 920 g

ISBN: 978-1-4939-7936-3
Verlag: Springer


Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. 

This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses.  To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package.
This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Johnson / Kuhn Applied Predictive Modeling jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


General Strategies.- Regression Models.- Classification Models.- Other Considerations.- Appendix.- References.- Indices.


Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. 

Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development.  He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D.  His scholarly work centers on the application and development of statistical methodology and learning algorithms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.