Buch, Englisch, 230 Seiten, Format (B × H): 242 mm x 194 mm, Gewicht: 630 g
Novel Analytics for Materials Data
Buch, Englisch, 230 Seiten, Format (B × H): 242 mm x 194 mm, Gewicht: 630 g
ISBN: 978-0-12-410394-8
Verlag: Elsevier - Health Sciences Division
Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-processing (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies.
Zielgruppe
<p>Materials scientists and engineers and mechanical engineers and researchers across academia, government and industry who are working in the area of new materials design, development and deployment; graduate students in materials science and engineering.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Werkstoffkunde, Materialwissenschaft: Forschungsmethoden
Weitere Infos & Material
Ch. 1. Materials, Data and InformaticsCh. 2. Microstructure FunctionCh. 3. Spatial CorrelationsCh. 4. Reduced-Order RepresentationsCh. 5. Generalized Composite TheoriesCh. 6. Structure-Property LinkagesCh. 7. Process-Structure LinkagesCh. 8. Emerging Data and Software RepositoriesCh. 9. e-Collaboration PlatformsCh. 10. Future Directions, Needs and Challenges




