Khattar / Agrawal | Ring Theory | E-Book | www.sack.de
E-Book

E-Book, Englisch, 294 Seiten, eBook

Khattar / Agrawal Ring Theory


1. Auflage 2023
ISBN: 978-3-031-29440-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 294 Seiten, eBook

ISBN: 978-3-031-29440-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook is designed for the UG/PG students of mathematics for all universities over the world. It is primarily based on the classroom lectures, the authors gave at the University of Delhi. This book is used both for self-study and course text. Full details of all proofs are included along with innumerous solved problems, interspersed throughout the text and at places where they naturally arise, to understand abstract notions. The proofs are precise and complete, backed up by chapter end problems, with just the right level of difficulty, without compromising the rigor of the subject. The book starts with definition and examples of Rings and logically follows to cover Properties of Rings, Subrings, Fields, Characteristic of a Ring, Ideals, Integral Domains, Factor Rings, Prime Ideals, Maximal Ideals and Primary Ideals, Ring Homomorphisms and Isomorphisms, Polynomial Rings, Factorization of Polynomials, and Divisibility in Integral Domains.

Khattar / Agrawal Ring Theory jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1. Rings......................................................................................................... 1–43
1.1 Definition and Examples of Rings........................................................ 5
1.2 Elementary Properties of Rings.......................................................... 15
1.3 Subrings............................................................................................... 24
1.4 Algebra of Subrings............................................................................ 31
1.5 Idempotent and Nilpotent Elements.................................................... 34
2. Integral Domains and Fields.............................................................. 45–78
2.1 Special Kinds of Rings........................................................................ 46
2.2 Some Theorems on Integral Domains and Fields.............................. 58
2.3 Characteristic of a Ring....................................................................... 68
3. Ideals and Factor Rings.................................................................... 79–136
3.1 Ideals in a Ring................................................................................... 80
3.2 Intersection and Union of Ideals......................................................... 90
3.3 Sum and Product of Two Ideals......................................................... 92
3.4 Ideal Generated by a Subset................................................................ 96
3.5 Simple Rings..................................................................................... 105
3.6 Factor Rings...................................................................................... 107
3.7 Types of Ideals.................................................................................. 116
4. Ring Homomorphisms and Isomorphisms........................................ 137–183
4.1 Ring Homomorphism........................................................................ 138
4.2 Properties of Ring Homomorphisms................................................. 144
4.3 Kernel of Ring Homomorphism....................................................... 156
4.4 Applications of Natural Homomorphism.......................................... 158
4.5 Isomorphism Theorems..................................................................... 160
4.6 The Field of Quotients of an Integral Domain................................. 171
5. Polynomial Rings............................................................................. 185–212
5.1 Ring of Polynomials.......................................................................... 185
(xii)
5.2 The Division Algorithm and its Consequences................................ 198
5.3 Principal Ideal Domain..................................................................... 204
6. Factorization of Polynomials ...................................................... 213–243
6.1 Irreducible and Reducible Polynomials............................................ 214
6.2 Irreducibility Tests............................................................................ 223
6.3 Irreducible Polynomials, Maximal Ideals and Fields....................... 233
7. Divisibility in Integral Domains.................................................... 245–289
7.1 Irreducible and Prime Elements........................................................ 246
7.2 Unique Factorization Domains......................................................... 262
7.3 Euclidean Domains............................................................................ 279
Appendix One..................................................................................... 291–292
Index................................................................................................... 293–294


Prof. Dinesh Khattar is currently principal of Kirori Mal College, University of Delhi. He topped (Gold Medalist) both in his B.Sc. and M.Sc. exams of Delhi University. He received Dr. S. Radhakrishnan Memorial National Teacher's Award 2015 for his contribution in the field of education. He was also awarded the prestigious Commonwealth Scholarship for pursuing research in the UK. He is actively involved in research and has presented papers in prestigious international conferences across the globe. Dr. Khattar has been a member of curriculum development committee for B.Sc. and M.Sc. programs at various universities including the University of Delhi. He is also an author of many books on Mathematics.

Dr. Neha Agrawal completed her education from Kirori Mal College, University of Delhi, and pursued her M.Phil. and Ph.D. from University of Delhi. Her areas of interest are nonlinear dynamical systems and chaos theory. She is working as an assistant professor at the Department of Mathematics, Kirori Mal College, University of Delhi. She has a rich teaching experience of over 13 years. She has published several research papers in reputed international journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.