Buch, Deutsch, 439 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 759 g
Reihe: Studienbücher Informatik
Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen
Buch, Deutsch, 439 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 759 g
Reihe: Studienbücher Informatik
ISBN: 978-3-662-69478-7
Verlag: Springer
Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur „glauben“ zu müssen.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.