E-Book, Deutsch, 439 Seiten, eBook
Reihe: Studienbücher Informatik
Knoblauch Mathematik für Informatik und Data Science
Erscheinungsjahr 2024
ISBN: 978-3-662-69479-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine fundierte Einführung in Logik, Analysis, Lineare Algebra und Stochastik für Künstliche Intelligenz und Maschinelles Lernen
E-Book, Deutsch, 439 Seiten, eBook
Reihe: Studienbücher Informatik
ISBN: 978-3-662-69479-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dieses Buch liefert eine kompakte aber fundierte Darstellung der wichtigsten Gebiete der Mathematik für Informatik, die insbesondere für Data Science, Künstliche Intelligenz und Maschinelles Lernen notwendig sind. Inhaltlich gehören dazu Grundlagen zu Logik und Beweisen, ein- und mehrdimensionale Analysis mit Differential- und Integralrechnung, Lineare Algebra mit Vektor- und Matrixrechnung, linearen Gleichungssystemen, Koordinatentransformationen, Eigenvektoren sowie Wahrscheinlichkeitsrechnung mit Grundlagen der Kombinatorik, Statistik und Informationstheorie. Trotz der kompakten Darstellung werden alle Konzepte und Sätze sorgfältig eingeführt und bewiesen. Nichts soll vom Himmel fallen, sondern aus Axiomen und elementaren Prinzipien hergeleitet werden. Ziel ist es beim Studierenden das befriedigende Gefühl zu erzeugen, alles von Grund auf verstanden zu haben, und nichts nur „glauben“ zu müssen.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1. Mathematische und logische Grundlagen.- 2. Rechnen in Körpern.- 3. Grenzwerte von Folgen und Reihen.- 4. Rationale Funktionen und Stetigkeit.- 5. Differentialrechnung.- 6. Integration.- 7. Die komplexe Exponentialfunktion und die trigonometrischen Funktionen.- 8.Vektorrechnung und Lineare Algebra.- 9. Fortgeschrittene Methoden der Linearen Algebra.- 10. Mehrdimensionale Differentialrechnung.- 11. Kombinatorik und Wahrscheinlichkeitsrechnung.