Kress / Meyrueis | Applied Digital Optics | Buch | 978-0-470-02263-4 | www.sack.de

Buch, Englisch, 638 Seiten, Format (B × H): 176 mm x 252 mm, Gewicht: 1206 g

Kress / Meyrueis

Applied Digital Optics

From Micro-optics to Nanophotonics
1. Auflage 2009
ISBN: 978-0-470-02263-4
Verlag: John Wiley & Sons

From Micro-optics to Nanophotonics

Buch, Englisch, 638 Seiten, Format (B × H): 176 mm x 252 mm, Gewicht: 1206 g

ISBN: 978-0-470-02263-4
Verlag: John Wiley & Sons


Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics.
Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries.
* Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files.
* Gives product managers access to an exhaustive list of applications available in today's market for integrating such digital optics, as well as where the next potential application of digital optics might be.
* Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified.
* Explains the numerical implementation of optical design and modelling techniques.
* Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.

Kress / Meyrueis Applied Digital Optics jetzt bestellen!

Weitere Infos & Material


About the Authors
Foreword by Professor Joseph Goodman
Foreword by Professor Trevor Hall
Acknowledgments
Acronyms
Introduction
Why a Book on Digital Optics?
Digital versus Analog
What are Digital Optics?
The Realm of Digital Optics
1 From Refraction to Diffraction
1.1 Refraction and Diffraction Phenomena
1.2 Understanding the Diffraction Phenomenon
1.3 No More Parasitic Effects
1.4 From Refractive Optics to Diffractive Optics
1.5 From Diffractive Optics to Digital Optics
1.6 Are Diffractives and Refractives Interchangeable Elements?
2 Classification of Digital Optics
2.1 Early Digital Optics
2.2 Guided-wave Digital Optics
2.3 Free-space Digital Optics
2.4 Hybrid Digital Optics
3 Guided-wave Digital Optics
3.1 From Optical Fibers to Planar Lightwave Circuits (PLCs)
3.2 Light Propagation in Waveguides
3.3 The Optical Fiber
3.4 The Dielectric Slab Waveguide
3.5 Channel Waveguides
3.6 PLC In- and Out-coupling
3.7 Functionality Integration
4 Refractive Micro-optics
4.1 Micro-optics in Nature
4.2 GRIN Lenses
4.3 Surface-relief Micro-optics
4.4 Micro-optics Arrays
5 Digital Diffractive Optics: Analytic Type
5.1 Analytic and Numeric Digital Diffractives
5.2 The Notion of Diffraction Orders
5.3 Diffraction Gratings
5.4 Diffractive Optical Elements
5.5 Diffractive Interferogram Lenses
6 Digital Diffractive Optics: Numeric Type
6.1 Computer-generated Holograms
6.2 Designing CGHs
6.3 Multiplexing CGHs
6.4 Various CGH Functionality Implementations
7 Digital Hybrid Optics
7.1 Why Combine Different Optical Elements?
7.2 Analysis of Lens Aberrations
7.3 Improvement of Optical Functionality
7.4 The Generation of Novel Optical Functionality
7.5 Waveguide-based Hybrid Optics
7.6 Reducing Weight, Size and Cost
7.7 Specifying Hybrid Optics in Optical CAD/CAM
7.8 A Parametric Design Example of Hybrid Optics via Ray-tracing Techniques
8 Digital Holographic Optics
8.1 Conventional Holography
8.2 Different Types of Holograms
8.3 Unique Features of Holograms
8.4 Modeling the Behavior of Volume Holograms
8.5 HOE Lenses
8.6 HOE Design Tools
8.7 Holographic Origination Techniques
8.8 Holographic Materials for HOEs
8.9 Other Holographic Techniques
9 Dynamic Digital Optics
9.1 An Introduction to Dynamic Digital Optics
9.2 Switchable Digital Optics
9.3 Tunable Digital Optics
9.4 Reconfigurable Digital Optics
9.5 Digital Software Lenses: Wavefront Coding
10 Digital Nano-optics
10.1 The Concept of 'Nano' in Optics
10.2 Sub-wavelength Gratings
10.3 Modeling Sub-wavelength Gratings
10.4 Engineering Effective Medium Optical Elements
10.5 Form Birefringence Materials
10.6 Guided Mode Resonance Gratings
10.7 Surface Plasmonics
10.8 Photonic Crystals
10.9 Optical Metamaterials
11 Digital Optics Modeling Techniques
11.1 Tools Based on Ray Tracing
11.2 Scalar Diffraction Based Propagators
11.3 Beam Propagation Modeling (BPM) Methods
11.4 Nonparaxial Diffraction Regime Issues
11.5 Rigorous Electromagnetic Modeling Techniques
11.6 Digital Optics Design and Modeling Tools Available Today
11.7 Practical Paraxial Numeric Modeling Examples
12 Digital Optics Fabrication Techniques
12.1 Holographic Origination
12.2 Diamond Tool Machining
12.3 Photo-reduction
12.4 Microlithographic Fabrication of Digital Optics
12.5 Micro-refractive Element Fabrication Techniques
12.6 Direct Writing Techniques
12.7 Gray-scale Optical Lithography
12.8 Front/Back Side Wafer Alignments and Wafer Stacks
12.9 A Summary of Fabrication Techniques
13 Design for Manufacturing
13.1 The Lithographic Challenge
13.2 Software Solutions: Reticle Enhancement Techniques
13.3 Hardware Solutions
13.4 Process Solutions
14 Replication Techniques for Digital Optics
14.1 The LIGA Process
14.2 Mold Generation Techniques
14.3 Embossing Techniques
14.4 The UV Casting Process
14.5 Injection Molding Techniques
14.6 The Sol-Gel Process
14.7 The Nano-replication Process
14.8 A Summary of Replication Technologies
15 Specifying and Testing Digital Optics
15.1 Fabless Lithographic Fabrication Management
15.2 Specifying the Fabrication Process
15.3 Fabrication Evaluation
15.4 Optical Functionality Evaluation
16 Digital Optics Application Pools
16.1 Heavy Industry
16.2 Defense, Security and Space
16.3 Clean Energy
16.4 Factory Automation
16.5 Optical Telecoms
16.6 Biomedical Applications
16.7 Entertainment and Marketing
16.8 Consumer Electronics
16.9 Summary
16.10 The Future of Digital Optics
Conclusion
Appendix A: Rigorous Theory of Diffraction
A.1 Maxwell's Equations
A.2 Wave Propagation and the Wave Equation
A.3 Towards a Scalar Field Representation
Appendix B: The Scalar Theory of Diffraction
B.1 Full Scalar Theory
B.2 Scalar Diffraction Models for Digital Optics
B.3 Extended Scalar Models
Appendix C: FFTs and DFTs in Optics
C.1 The Fourier Transform in Optics Today
C.2 Conditions for the Existence of the Fourier Transform
C.3 The Complex Fourier Transform
C.4 The Discrete Fourier Transform
C.5 The Properties of the Fourier Transform and Examples in Optics
C.6 Other Transforms
Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.