Krivelevich / Panagiotou / Penrose | Random Graphs, Geometry and Asymptotic Structure | E-Book | sack.de
E-Book

E-Book, Englisch, Band 84, 0 Seiten

Reihe: London Mathematical Society Student Texts

Krivelevich / Panagiotou / Penrose Random Graphs, Geometry and Asymptotic Structure


Erscheinungsjahr 2016
ISBN: 978-1-316-55406-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 84, 0 Seiten

Reihe: London Mathematical Society Student Texts

ISBN: 978-1-316-55406-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The theory of random graphs is a vital part of the education of any researcher entering the fascinating world of combinatorics. However, due to their diverse nature, the geometric and structural aspects of the theory often remain an obscure part of the formative study of young combinatorialists and probabilists. Moreover, the theory itself, even in its most basic forms, is often considered too advanced to be part of undergraduate curricula, and those who are interested usually learn it mostly through self-study, covering a lot of its fundamentals but little of the more recent developments. This book provides a self-contained and concise introduction to recent developments and techniques for classical problems in the theory of random graphs. Moreover, it covers geometric and topological aspects of the theory and introduces the reader to the diversity and depth of the methods that have been devised in this context.

Krivelevich / Panagiotou / Penrose Random Graphs, Geometry and Asymptotic Structure jetzt bestellen!

Weitere Infos & Material


Editors' introduction; Part I. Long Paths and Hamiltonicity in Random Graphs: 1. Introduction; 2. Tools; 3. Long paths in random graphs; 4. The appearance of Hamilton cycles in random graphs; References for Part I; Part II. Random Graphs from Restricted Classes: 1. Introduction; 2. Random trees; 3. Random graphs from block-stable classes; References for Part II; Part III. Lectures on Random Geometric Graphs: 1. Introduction; 2. Edge counts; 3. Edge counts: normal approximation; 4. The maximum degree; 5. A sufficient condition for connectivity; 6. Connectivity and Hamiltonicity; 7. Solutions to exercises; References for Part III; Part IV. On Random Graphs from a Minor-closed Class: 1. Introduction; 2. Properties of graph classes; 3. Bridge-addability, being connected and the fragment; 4 Growth constants; 5. Unlabelled graphs; 6. Smoothness; 7. Concluding remarks; References for Part IV; Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.