Lambert | Capillary Forces in Microassembly | E-Book | www.sack.de
E-Book

E-Book, Englisch, 263 Seiten

Reihe: Microtechnology and MEMS

Lambert Capillary Forces in Microassembly

Modeling, Simulation, Experiments, and Case Study
1. Auflage 2007
ISBN: 978-0-387-71089-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Modeling, Simulation, Experiments, and Case Study

E-Book, Englisch, 263 Seiten

Reihe: Microtechnology and MEMS

ISBN: 978-0-387-71089-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Capillary Forces in Microassembly discusses the use of capillary forces as a gripping principle in microscale assembly. Clearly written and well-organized, this text brings together physical concepts at the microscale with practical applications in micromanipulation. Throughout this work, the reader will find a review of the existing gripping principles, elements to model capillary forces as well as descriptions of the simulation and experimental test bench developed to study the design parameters.  Using well-known concepts from surface science (such as surface tension, capillary effects, wettability, and contact angles) as inputs to mechanical models, the amount of effort required to handle micro-components is then predicted. Researchers and engineers involved in micromanipulation and precision assembly will find this a highly useful reference for microassembly system design and analysis.

Lambert Capillary Forces in Microassembly jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;7
2;Preface;9
2.1;0.1 Context;9
2.2;0.2 Contributions of this Book;12
2.3;0.3 What this Book Does Not Tell;15
2.4;0.4 Reading Suggestion;16
3;Contents;17
4;Part I Microassembly Specificities;23
4.1;1 From Conventional Assembly to Microassembly;24
4.1.1;1.1 Introduction;24
4.1.2;1.2 Design of Monolithic Products for Microassembly;25
4.1.3;1.3 Combined Part Manufacturing and Assembly;27
4.1.4;1.4 Product External Assembly Functions;27
4.1.5;1.5 Product Internal Assembly Functions;27
4.1.6;1.6 Stochastic or Self-Assembly;28
4.1.7;1.7 Parallel Assembly;29
4.1.8;1.8 Conclusions;29
4.2;2 Classification of Forces Acting in the Microworld;30
4.2.1;2.1 Introduction;30
4.2.2;2.2 Classification Schemes of the Forces;31
4.2.3;2.3 Conclusions;33
4.3;3 Handling Principles for Microassembly;34
4.3.1;3.1 Introduction;34
4.3.2;3.2 Presentation of Gripping Principles;34
4.3.3;3.3 Classification of Gripping Principles;46
4.3.4;3.4 Comparison between Gripping Principles;49
4.3.5;3.5 Conclusions;50
4.4;4 Conclusions;55
5;Part II Modeling and Simulation of Capillary Forces;56
5.1;5 Introduction;57
5.2;6 First Set of Parameters;58
5.2.1;6.1 Introduction;58
5.2.2;6.2 Surface Tension;58
5.2.3;6.3 Young–Dupr ´ e Equation and Static Contact Angle;59
5.2.4;6.4 Laplace Equation;60
5.2.5;6.5 Effects of a Liquid Bridge on the Adhesion Between Two Solids;62
5.2.6;6.6 A Priori Justification of a Capillary Gripper;64
5.2.7;6.7 Conclusions;66
5.3;7 State of the Art on the Capillary Force Models at Equilibrium;67
5.3.1;7.1 Introduction;67
5.3.2;7.2 Energetic Approach: Interaction Between Two Parallel Plates;67
5.3.3;7.3 Energetic Approach: Other Configurations;71
5.3.4;7.4 Geometrical Approach: Circle Approximation;73
5.3.5;7.5 Geometrical Approach: Parabolic Approximation;77
5.3.6;7.6 Comparisons and Summary;77
5.4;8 Static Simulation at Constant Volume of Liquid;80
5.4.1;8.1 Introduction;80
5.4.2;8.2 Description of the Problem;80
5.4.3;8.3 Assumptions;81
5.4.4;8.4 Equations and Numerical Simulation;82
5.4.5;8.5 Discussion and Conclusions;86
5.5;9 Comparisons Between the Capillary Force Models;88
5.5.1;9.1 Introduction;88
5.5.2;9.2 Qualitative Arguments;88
5.5.3;9.3 Analytical Arguments;90
5.5.4;9.4 Conclusions;96
5.6;10 Example 1: Application to the Modeling of a Microgripper for Watch Bearings;97
5.6.1;10.1 Introduction;97
5.6.2;10.2 Presentation of the Case Study;97
5.6.3;10.3 Analytical Model Based on the Circle Approximation;100
5.6.4;10.4 Numerical Model Based on the Laplace Equation;103
5.6.5;10.5 Benchmark;107
5.6.6;10.6 Pressure Difference Saturation;108
5.6.7;10.7 Conclusions;110
5.7;11 Second Set of Parameters;111
5.7.1;11.1 Introduction;111
5.7.2;11.2 Surface Heterogeneities and Surface Impurities;111
5.7.3;11.3 Surface Roughness;112
5.7.4;11.4 Static Contact Angle Hysteresis;113
5.7.5;11.5 Dynamic Spreading;114
5.7.6;11.6 Conclusions;115
5.8;12 Limits of the Static Simulation;116
5.8.1;12.1 Introduction;116
5.8.2;12.2 Performances of the Assembly Machines;116
5.8.3;12.3 Nondimensional Numbers and Buckingham p Theorem;116
5.8.4;12.4 Another Approach: Use of a 1D Analytical Model;119
5.8.5;12.5 Limitations of the Static Model;121
5.8.6;12.6 Conclusions;123
5.9;13 Approaching Contact Distance, Rupture Criteria, and Volume Repartition After Separation;124
5.9.1;13.1 Introduction;124
5.9.2;13.2 Approaching Contact Distance;124
5.9.3;13.3 Rupture Distance and Residual Volume of Liquid;126
5.9.4;13.4 Mathematical and Notation Preliminaries;127
5.9.5;13.5 Volume Repartition;128
5.9.6;13.6 Rupture Condition and Rupture Gap;130
5.9.7;13.7 Analytical Benchmarks;132
5.9.8;13.8 Summary of the Methods;133
5.9.9;13.9 Comparison between the Methods;135
5.9.10;13.10 Conclusions;137
5.10;14 Example 2: Numerical Implementation of the Proposed Models;139
5.10.1;14.1 Introduction;139
5.10.2;14.2 Liquid Bridge Simulation for the Analysis of a Meniscus;139
5.10.3;14.3 Evaluation of the Double Iterative Scheme;143
5.10.4;14.4 Pseudodynamic Simulation;145
5.10.5;14.5 Conclusions;147
5.11;15 Conclusions of the Theoretical Study of Capillary Forces;148
6;Part III Experimental Aspects;150
6.1;16 Introduction;151
6.2;17 Test Bed and Characterization;153
6.2.1;17.1 Introduction;153
6.2.2;17.2 Requirements;153
6.2.3;17.3 Test Bed Principles;155
6.2.4;17.4 CAD Model and Drawings;158
6.2.5;17.5 Characteristics of the Force Measurement Set Up;161
6.2.6;17.6 Characteristics of the Contact Angles Measurements;164
6.2.7;17.7 Surface Tension Measurement;165
6.2.8;17.8 Modus Operandi;165
6.2.9;17.9 Characterization;168
6.2.10;17.10 Conclusions;172
6.3;18 Results;173
6.3.1;18.1 Introduction;173
6.3.2;18.2 Preliminary Results: Validation of the Simulation Code;173
6.3.3;18.3 Advancing vs Receding Contact Angle;178
6.3.4;18.4 Influence of the Gap;180
6.3.5;18.5 Influence of the Gripper Geometry;181
6.3.6;18.6 Influence of the Surface Tension;182
6.3.7;18.7 Influence of the Contact Angle .1;184
6.3.8;18.8 Influence of the Relative Orientation;184
6.3.9;18.9 Auxiliary PTFE Tip;186
6.3.10;18.10 Dynamical Release;187
6.3.11;18.11 Approaching Contact and Rupture Distances;195
6.3.12;18.12 Shear Force;196
6.3.13;18.13 Conclusions;197
6.4;19 Example 3: Application to the Watch Bearing Case Study: Characterization;198
6.4.1;19.1 Introduction;198
6.4.2;19.2 Available Grippers;198
6.4.3;19.3 Available Components;200
6.4.4;19.4 Liquid Properties;200
6.4.5;19.5 Liquid Dispensing;201
6.4.6;19.6 Contact Angles;204
6.5;20 Example 4: Application to the Watch Bearing Case Study: Results;207
6.5.1;20.1 Introduction;207
6.5.2;20.2 Picking;207
6.5.3;20.3 Placing;212
6.5.4;20.4 Compliance Effect;213
6.5.5;20.5 Force Measurement;214
6.5.6;20.6 Conclusions;217
6.6;21 Conclusions;219
6.6.1;21.1 Introduction;219
6.6.2;21.2 Picking Operations;219
6.6.3;21.3 Releasing Strategies;221
6.6.4;21.4 Design Aspects;223
7;Part IV General Conclusions and Perspectives;227
7.1;22 Conclusions and Perspectives;228
7.1.1;22.1 Conclusions;228
7.1.2;22.2 Perspectives;230
8;Part V Appendices;231
8.1;A Modeling Complements;232
8.1.1;A.1 Analytical Approximations of the Capillary Forces;232
8.1.2;A.2 Volume Repartition by the Energetic Approach;238
8.2;B Geometry Complements;242
8.2.1;B.1 Area and Volume of a Spherical Cap;242
8.2.2;B.2 Differential Geometry of Surfaces;243
8.2.3;B.3 Catenary Curve;245
8.3;C Comparison Between Both Approaches;247
8.4;D Symbols;251
9;References;254
10;Index;264



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.