E-Book, Deutsch, 272 Seiten, eBook
Reihe: Masterclass
Larsson / Thomee Partielle Differentialgleichungen und numerische Methoden
2005
ISBN: 978-3-540-27422-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, 272 Seiten, eBook
Reihe: Masterclass
ISBN: 978-3-540-27422-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.
Zielgruppe
Upper undergraduate
Weitere Infos & Material
Inhaltsverzeichnis 1 Einführung : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.1 Hintergrund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Notation und mathematische Vorbemerkungen . . . . . . . . . . . . . . 5 1.3 Physikalische Herleitung der Wärmeleitungsgleichung . . . . . . . . 8 1.4 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Ein Zweipunkt-Randwertproblem : : : : : : : : : : : : : : : : : : : : : : : : : : 15 2.1 Das Maximumprinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Greensche Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Variationsformulierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Elliptische Gleichungen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 3.1 Vorbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Ein Maximumprinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Das Dirichlet-Problem fur eine Kreisscheibe. Das Poisson-Integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Fundamentallösungen. Die Greensche Funktion. . . . . . . . . . . . . . 32 3.5 Variationsformulierung des Dirichlet-Problems . . . . . . . . . . . . . . 35 3.6 Ein Neumann-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Regularität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.8 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Finite Differenzenverfahren für elliptische Gleichungen : : : : 45 4.1 Ein Zweipunkt-Randwertproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Die Poisson-Gleichung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Die Methode der finiten Elemente für elliptische Gleichungen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53 5.1 Ein Zweipunkt-Randwertproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Ein Modellproblem in der Ebene . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Einige Aspekte der Approximationstheorie . . . . . . . . . . . . . . . . . . 63 5.4 Fehlerabschätzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5 Eine a posteriori Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . 69 5.6 Numerische Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.7 Eine Methode der gemischten finiten Elemente . . . . . . . . . . . . . . 75 5.8 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Das elliptische Eigenwertproblem : : : : : : : : : : : : : : : : : : : : : : : : : : 81 6.1 Entwicklung nach Eigenfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Numerische Lösung des Eigenwertproblems . . . . . . . . . . . . . . . . . 92 6.3 Problemstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7 Anfangswertprobleme für gewöhnliche Differentialgleichungen: : : : : : : : : : : : : : :




