E-Book, Englisch, 355 Seiten, eBook
Reihe: Springer Texts in Statistics
Lederer Fundamentals of High-Dimensional Statistics
Erscheinungsjahr 2021
ISBN: 978-3-030-73792-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
With Exercises and R Labs
E-Book, Englisch, 355 Seiten, eBook
Reihe: Springer Texts in Statistics
ISBN: 978-3-030-73792-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field.It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Notation.- Introduction.- Linear Regression.- Graphical Models.- Tuning-Parameter Calibration.- Inference.- Theory I: Prediction.- Theory II: Estimation and Support Recovery.- A Solutions.- B Mathematical Background.- Bibliography.- Index.