Leonardis / Ricci / Roth | Computer Vision – ECCV 2024 | E-Book | sack.de
E-Book

E-Book, Englisch, 488 Seiten

Reihe: Lecture Notes in Computer Science

Leonardis / Ricci / Roth Computer Vision – ECCV 2024

18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXVIII
Erscheinungsjahr 2024
ISBN: 978-3-031-73229-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXXVIII

E-Book, Englisch, 488 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-73229-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Leonardis / Ricci / Roth Computer Vision – ECCV 2024 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


SeA: Semantic Adversarial Augmentation for Last Layer Features from Unsupervised Representation Learning.- Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents.- Rethinking Fast Adversarial Training: A Splitting Technique To Overcome Catastrophic Overfitting.- Quality Assured: Rethinking Annotation Strategies in Imaging AI.- BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues.- Enhancing Plausibility Evaluation for Generated Designs with Denoising Autoencoder.- Weakly-Supervised 3D Hand Reconstruction with Knowledge Prior and Uncertainty Guidance.- 3D Reconstruction of Objects in Hands without Real World 3D Supervision.- To Supervise or Not to Supervise: Understanding and Addressing the Key Challenges of Point Cloud Transfer Learning.- Parameterized Quasi-Physical Simulators for Dexterous Manipulations Transfer.- 3D Hand Pose Estimation in Everyday Egocentric Images.- Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops.- Towards Neuro-Symbolic Video Understanding.- Optimization-based Uncertainty Attribution Via Learning Informative Perturbations.- Context-Aware Action Recognition: Introducing a Comprehensive Dataset for Behavior Contrast.- Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency.- Adaptive Compressed Sensing with Diffusion-Based Posterior Sampling.- Instant Uncertainty Calibration of NeRFs Using a Meta-Calibrator.- MetaAT: Active Testing for Label-Efficient Evaluation of Dense Recognition Tasks.- Salience-Based Adaptive Masking: Revisiting Token Dynamics for Enhanced Pre-training.- Data Augmentation via Latent Diffusion for Saliency Prediction.- Explorative Inbetweening of Time and Space.- A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-skeletal Control.- Learning to Make Keypoints Sub-Pixel Accurate.- Imaging with Confidence: Uncertainty Quantification for High-dimensional Undersampled MR Images.- Generalizable Human Gaussians for Sparse View Synthesis.- DrivingDiffusion: Layout-Guided Multi-View Driving Scenarios Video Generation with Latent Diffusion Model.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.