• Neu
Li / Chbeir / Zong | Web and Big Data | E-Book | www.sack.de
E-Book

E-Book, Englisch, 717 Seiten

Reihe: Computer Science (R0)

Li / Chbeir / Zong Web and Big Data

9th International Joint Conference, APWeb-WAIM 2025, Shenyang, China, August 28–30, 2025, Proceedings, Part II
Erscheinungsjahr 2026
ISBN: 978-981-955716-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

9th International Joint Conference, APWeb-WAIM 2025, Shenyang, China, August 28–30, 2025, Proceedings, Part II

E-Book, Englisch, 717 Seiten

Reihe: Computer Science (R0)

ISBN: 978-981-955716-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



The four-volume set LNCS constitutes the refereed proceedings of the 9th International Joint Conference on Web and Big Data, APWeb-WAIM 2025, held in Shenyang, China, during August 28–30, 2025.

The 136 full papers and 15 short papers presented in these proceedings were carefully reviewed and selected from 472 submissions. The papers are organized in the following topical sections:

Part I: Data Mining I; Machine Learning I; Information Retrieval and Knowledge Management I; Graph Data Management andAnalytics I; Complex Data Management.

Part II: Complex Data Management; Spatial and Temporal Data Management; Data Privacy and Trusted AI; Data Management on New Hardwares; Query Processing and Optimization; Data Mining II.

Part III: Data Mining II; Machine Learning II; Information Retrieval and Knowledge Management II; Graph Data Management andAnalytics II; Big Data Management.

Part IV: Big Data Management; LLM for Data Management; Information Retrieval; Demonstration Paper;  Industry Paper.

Li / Chbeir / Zong Web and Big Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Complex Data Management.

.-  LSM-Cache:An Efficient Log-Structured Merge Hybrid Key-Value Cache for Massive Small Objects.

.- Monkey: Segmentation-based Lossless Floating-Point Compression.

.- DataAugmentation based Federated Client Selection with Bandit Approach.

.- Text-to-Image Person Re-Identification via Optimal Transport-based Priority Distribution.

.- GRAY: Enhancing Few-Shot NL2SQLTranslation through Incremental SQL Log-Based Demonstration Expansion.

.- RS-Stega: AToken-Level Quality-Control Framework for Generative Text Steganography.

.- TrustGenTable: ATrusted Method for Generating Tabular Data.

.- Enhancing Merge-Based PLA8 Compression under Higher Requirement for Data Precision.

.- High-Performance Complex Event Matching over Out-of-Order Event Streams.

.- Enhancing Data Compression through Vertical Distance-Based Piecewise LinearApproximation.

.- Spatialand Temporal Data Management.

.- PTP-PGAT: Partition Transition Probability and Pretraining Graph Attention Networks for Trajectory
 Representation.

.- Efficient Processing of Dynamic Rank-happiness Maximization Queries.

.- Aparameter efficient short-term metro inter-station flow forecasting model with MMoE.

.- Encoder-Decoder Driven Adaptive Multiscale-CNN Based Indoor Localization with WiFi Fingerprinting.

.- HELM:Hybrid Spatial Index of Moving Objects at Large Scales Tuned with Multi-Agent Reinforcement Learning.

.- Data Privacy and Trusted AI.

.- PriTree: Accurate Range Queries via Hierarchical Prefix-sum under Local Differential Privacy.

.- ASFRA-DP: Learning-Based Federated Spatial Query Processing with Density-Aware Privacy.

.- SVD-based Trajectory Data Synthesis under Local Differential Privacy.

.- An Efficient Federated Learning Privacy Preservation Method with Differential Privacy against Model
 Inversion Attack.

.- Improve Visual Grounding with Dynamic Gating and Dual StreamAttention.

.- Counterfactual Adversarial Examples for Mitigating Privacy Risk inAdversarially Robust Models.

.- Data Management on New Hardwares.

.- NALI: NUMA-awareAdaptive Learned Index for In-Memory Multi-core Databases.

.- SAHSCM:Self-Activating and High-Speed Cryptographic Module for SATABridge Systems.

.- UltraZenFS: AUser-Space File System for LSM-tree based Key-Value Stores on Small-Zone ZNS
 SSDs.

.- WROTree: Write and Range query Optimal Tree in Persistent Memory.

.- Reducing Write Stall and WriteAmplification for LSM-tree based Key-Value Stores Using a Hybrid
 Compression Strategy.

.- Balance Performance and Cost:ACold/Hot Data ClassificationAlgorithm for NVM-SSD hybrid.

.- Query Processing and Optimization.

.- Towards Efficient Graph Similarity Search in Cloud Environments.

.- APO:Adaptive Pathway Optimization for Complex Query Tasks Based on KV-stores.

.- LH-DPT:An Update Efficient Index for High-DimensionalApproximate Nearest Neighbor Search.

.- LSTM-based Query Performance Optimization in LSM-trees.

.- Secure Location-Based Continuous Range Queries in Fog-based Cloud Computing.

.- RLGCNt: Cardinality Estimation based on Rank Gauss Transform Coding andAttention.

.- Continuous Top-k Skyline Pairs Query Over Data Stream.

.- Probabilistic Optimization of Top-k Aggregation in Distributed Environments.

.- ClassiCard: A Classifier Based Approach for Cardinality Estimation in Normalized Tables.

.- Meta-Transfer Routing in Dynamic Road Networks via Hierarchical Graph Embedding.

.- AData OrganizationArchitecture for Efficient Transaction Processing and Approximate AP Query in
 HTAPSystems.

.- Data Mining II.

.- Quadruple Modeling Network for Temporal Knowledge Graph Completion.

.- Causal Inference forAlleviating Sequence Mutation in Sequential Recommendation.

.- GraphADQ:Graph-Attentive Dual Deep Q-Network forAdaptive Community Detection.

.- A Novel Temporal Heterogeneous Graph Learning-BasedAnomaly Detection Method for Industrial
 Chain Evolution.

.- Contrastive Learning of Graph Transformer on Heterogeneous Information Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.