Li / Yang / Liu | Interconnected Power Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, 236 Seiten

Reihe: Power Systems

Li / Yang / Liu Interconnected Power Systems

Wide-Area Dynamic Monitoring and Control Applications
1. Auflage 2016
ISBN: 978-3-662-48627-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Wide-Area Dynamic Monitoring and Control Applications

E-Book, Englisch, 236 Seiten

Reihe: Power Systems

ISBN: 978-3-662-48627-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book reports on the latest findings in the application of the wide area measurement systems (WAMS) in the analysis and control of power systems. The book collects new research ideas and achievements including a delay-dependent robust design method, a wide area robust coordination strategy, a hybrid assessment and choice method for wide area signals, a free-weighting matrices method and its application, as well as the online identification methods for low-frequency oscillations. The main original research results of this book are a comprehensive summary of the authors' latest six-year study. The book will be of interest to academic researchers, R&D engineers and graduate students in power systems who wish to learn the core principles, methods, algorithms, and applications of the WAMS.

Li / Yang / Liu Interconnected Power Systems jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;8
2.1;Outlines;9
2.2;Acknowledgments;11
3;Contents;12
4;1 Introduction;17
4.1;1.1 Status Quo and Trends of Interconnected Systems;17
4.2;1.2 Stability Problems of Interconnected Systems;19
4.3;1.3 WAMS Technology and Its Application in Interconnected Systems;20
4.4;1.4 Low Frequency Oscillation Analysis Methods;21
4.5;1.5 Challenges of Wide Area Dynamic Monitoring and Control;23
4.6;References;25
5;2 Theoretical Foundation of Low-Frequency Oscillations;28
5.1;2.1 The Basic Principles of Low-Frequency Oscillation;28
5.1.1;2.1.1 Local Mode;29
5.1.2;2.1.2 Inter-Area Mode;31
5.2;2.2 Techniques Based on System Model;34
5.2.1;2.2.1 Linearization of the State Equation;35
5.2.2;2.2.2 Calculation of Eigenvalues and Eigenvectors;36
5.2.3;2.2.3 Determination of Oscillation Parameters;37
5.2.4;2.2.4 Brief Summary of System Model Analysis Techniques;38
5.3;2.3 Techniques Based on Measured Information;39
5.3.1;2.3.1 Discrete Fourier Transform;39
5.3.2;2.3.2 Prony Algorithm and Multi-Prony;41
5.3.3;2.3.3 Wavelet Transform and Its Improvements;44
5.3.4;2.3.4 Hilbert--Huang Transform;46
5.4;2.4 Summary;51
5.5;References;51
6;3 Oscillatory Parameters Computation Based on Improved HHT;53
6.1;3.1 Introduction of Improved Empirical Mode Decomposition (EMD);53
6.1.1;3.1.1 The Selection of Stop Criterion for Sifting in EMD;53
6.1.2;3.1.2 End Effects and Extrema Symmetrical Extension;55
6.1.3;3.1.3 Mode-Mixing and Frequency Heterodyne Technique (FHT);58
6.1.4;3.1.4 The Improved EMD Based on ESE and FHT;64
6.2;3.2 Time and Frequency Analysis of Intrinsic Mode Function;65
6.3;3.3 Normalized Hilbert Transform (NHT);67
6.3.1;3.3.1 Decompose the IMF into AM and FM Parts;68
6.3.2;3.3.2 Calculation of the Instantaneous Frequency;69
6.3.3;3.3.3 Calculation of the Instantaneous Amplitude and Damping Ratio;70
6.4;3.4 The Flowchart of the Improved HHT;70
6.5;3.5 Summary;71
6.6;References;72
7;4 Oscillation Model Identification Based on Nonlinear Hybrid Method (NHM);73
7.1;4.1 Identification of Dominant Oscillation Mode;73
7.2;4.2 The Processing of Oscillation Mode Identification;75
7.2.1;4.2.1 Calculation of the Absolute Phase (AP) and Relative Phase (RP) of IMF;75
7.2.2;4.2.2 Determination of Node Contribution Factor (NCF);76
7.2.3;4.2.3 Computation of Approximate Mode Shape (AMS);77
7.2.4;4.2.4 Coherency of the Measured Signals;78
7.2.5;4.2.5 Flowchart of the Nonlinear Hybrid Method (NHM);79
7.3;4.3 Study Case;81
7.4;4.4 Summary;88
7.5;References;88
8;5 Identification of Dominant Complex Orthogonal Mode (COM);89
8.1;5.1 Introduction of Spatial and Temporal Behaviors of Oscillation Mode;89
8.2;5.2 Construction of the Complex Ensemble Measurement Matrix;91
8.3;5.3 Implementations of Complex Orthogonal Decomposition (COD);92
8.3.1;5.3.1 Complex Eigenvalues Decomposition (C-ED);92
8.3.2;5.3.2 Complex Singular Value Decomposition (C-SVD);93
8.3.3;5.3.3 Augmented Matrix Decomposition (AMD);94
8.3.4;5.3.4 Definition of Relevant COMs;96
8.4;5.4 Extraction of the Propagating Features;97
8.4.1;5.4.1 Spatial Energy Distribution;97
8.4.2;5.4.2 Temporal Dynamic Characteristics;97
8.4.3;5.4.3 Energy Contribution Factor (ECF);98
8.5;5.5 The Flowchart of Proposed COD;98
8.6;5.6 Study Case;99
8.6.1;5.6.1 Description of Sliding Window;99
8.6.2;5.6.2 Sliding Window Recursive Algorithm (SWRA) of COD;100
8.6.3;5.6.3 Applications of the COD-SWRA;101
8.7;5.7 Summary;105
8.8;References;105
9;6 Basic Framework and Operating Principle of Wide-Area Damping Control;107
9.1;6.1 Basic Framework of Wide-Area Damping Control;107
9.2;6.2 Operating Principle of Wide-Area Damping Control;109
9.3;6.3 System Modeling;112
9.3.1;6.3.1 SMIB System with FACTS WADC;112
9.3.2;6.3.2 System Modeling Based on Direct Feedback Linearization Theory;112
9.4;6.4 Summary;115
9.5;References;115
10;7 Coordinated Design of Local PSSs and Wide-Area Damping Controller;117
10.1;7.1 Overview of Optimization Method;117
10.2;7.2 Description of Sequence Design and Global Optimization Method;118
10.2.1;7.2.1 Structure of PSS and HVDC-WADC;118
10.2.2;7.2.2 Design Procedure;118
10.3;7.3 Methodological Implementation;121
10.3.1;7.3.1 Damping Distribution;121
10.3.2;7.3.2 Sequential Design;121
10.3.3;7.3.3 Global Optimization;122
10.4;7.4 Case Study;123
10.4.1;7.4.1 AC/DC Hybrid Interconnected Systems;123
10.4.2;7.4.2 Result of Damping Distribution;124
10.4.3;7.4.3 Design Result;126
10.4.4;7.4.4 Performance Validation;128
10.4.4.1;7.4.4.1 Eigenvalue Analysis;128
10.4.4.2;7.4.4.2 Nonlinear Simulation;130
10.5;7.5 Summary;132
10.6;References;133
11;8 Robust Coordination of HVDC and FACTS Wide-Area Damping Controllers;135
11.1;8.1 Overview of Wide-Area Damping Control;135
11.2;8.2 Description of Wide-Area Control Networks Using Multiple Power Electronics-Based Controllers;136
11.3;8.3 Controller Design Formulation;137
11.3.1;8.3.1 Multi-objective Synthesis of Wide-Area Robust Control;137
11.3.2;8.3.2 Pole Placement in LMI Regions;138
11.4;8.4 Design Procedure of Wide-Area Robust Coordinated Control;139
11.5;8.5 Case Study;140
11.5.1;8.5.1 Choice of Suitable Wide-Area Control Signals;140
11.5.2;8.5.2 Robust Design of HVDC- and FACTS-WADC;142
11.5.3;8.5.3 Evaluation of Robust Performance;144
11.5.4;8.5.4 Nonlinear Simulation;146
11.6;8.6 Summary;148
11.7;References;148
12;9 Assessment and Choice of Input Signals for Multiple Wide-Area Damping Controllers;150
12.1;9.1 Overview of Signal Selection Methods;150
12.2;9.2 Description of Relative Gain Array and Residue Analysis;151
12.2.1;9.2.1 Power System Model;151
12.2.2;9.2.2 Residue Analysis Method;152
12.2.3;9.2.3 RGA Analysis Method;152
12.2.3.1;9.2.3.1 Definition of RGA;152
12.2.3.2;9.2.3.2 Calculation of RGA;153
12.2.3.3;9.2.3.3 Properties of RGA;154
12.3;9.3 Signal Selection Procedure;154
12.4;9.4 Case Study;156
12.4.1;9.4.1 Preselection of Input Signal Candidates;157
12.4.2;9.4.2 Final Choice of Effective Input Signals;158
12.4.3;9.4.3 Comparison with Local Control and Other Wide-Area Control Pairs;160
12.4.4;9.4.4 Design of Multiple HVDC- and FACTS-WADCs;161
12.4.5;9.4.5 Validation of Control Performance;163
12.4.5.1;9.4.5.1 Case 1: Damping Performance of Multiple WADCs;163
12.4.5.2;9.4.5.2 Case 2: Influence of Wide-Area Control to the Local Control;164
12.4.5.3;9.4.5.3 Case 3: Robustness at Different Operating Scenarios;164
12.5;9.5 Summary;166
12.6;References;167
13;10 Free-Weighting Matrix Method for Delay Compensation of Wide-Area Signals;168
13.1;10.1 Time-Delay Power System;168
13.1.1;10.1.1 Description of Delay Power System with Wide-Area Signals' Delay;169
13.1.2;10.1.2 Stability Analysis of Time-Delay Power System;171
13.2;10.2 Description of Free-Weighting Matrices (FWMs) Method;172
13.3;10.3 General Configuration of FACTS-WADC Based on FWMs Approach;175
13.4;10.4 FWMs Approach-Based FACTS-WADC Design;176
13.5;10.5 Cases Study;182
13.5.1;10.5.1 4-Machine 2-Area System;182
13.5.2;10.5.2 16-Machine 5-Area Test System;184
13.6;10.6 Summary;187
13.7;References;190
14;11 Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems;192
14.1;11.1 System Description;192
14.2;11.2 Hardware Design;193
14.3;11.3 Design of the Control Algorithm;197
14.3.1;11.3.1 Classic Phase Compensation Method;197
14.3.2;11.3.2 Delay-Dependent State-Feedback Robust Design Method;199
14.3.3;11.3.3 Delay-Dependent Dynamic Output-Feedback Control Method;202
14.4;11.4 Algorithm Implementation;204
14.4.1;11.4.1 Discrete-Time Model for the Hardware Controller;204
14.4.2;11.4.2 Algorithm Flowchart;207
14.5;11.5 Experimental Results;210
14.6;11.6 Summary;214
14.7;References;214
15;12 Design and Implementation of Parallel Processing in Embedded PDC Application for FACTS Wide-Area Damping Control;216
15.1;12.1 System Description;216
15.2;12.2 Design of the Embedded System;218
15.3;12.3 Implementation of the Embedded System;220
15.3.1;12.3.1 Data Receiving via Communication Network;220
15.3.2;12.3.2 Data Processing;221
15.3.3;12.3.3 Monitoring and Protection;223
15.3.4;12.3.4 Wide-Area Damping Controller;225
15.3.5;12.3.5 Control Output Through SPI and External DAC;226
15.4;12.4 Parallel Processing of the Embedded System;228
15.5;12.5 Experimental Result;230
15.6;12.6 Summary;236
15.7;References;236



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.