Liebig | Logischer Entwurf digitaler Systeme | E-Book | sack.de
E-Book

E-Book, Deutsch, 498 Seiten, eBook

Liebig Logischer Entwurf digitaler Systeme


4., bearbeitete und erweiterte Auflage 2006
ISBN: 978-3-540-29430-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 498 Seiten, eBook

ISBN: 978-3-540-29430-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Mit dieser Neuauflage liegt der Klassiker der Digitaltechnik nun in der vierten Auflage vor. Das Buch behandelt Prinzipien und Methoden für den Entwurf digitaler Systeme. Dabei stehen Betrachtungen auf der Logikschaltungsebene bis zur Registertransferebene im Vordergrund. Spezielle Technologien werden insoweit berücksichtigt, wie sie einen grundlegenden Einfluss auf den Schaltungsentwurf haben. Folgende Themen werden besonders gründlich behandelt: Der Logikalkül der Mathematik, Durchschalt- und Verknüpfungstechnik für Logik- und Speicherbausteine, Asynchrontechnik vom Petri-Netz zur Schaltung, Synchrontechnik mit parallel arbeitenden Werken sowie Zusammenbau von applikationsspezifischen ICs und programmierbaren Universalrechnern. In der vierten Auflage wurde die Strukturierung und somit die Lesbarkeit des Buches weiter verbessert. Die vielen Zeichnungen und anwendungsorientierten Aufgaben unterstützen dies zusätzlich. Die Lösungen wurden noch gründlicher ausgearbeitet. Neu aufgenommen wurden die Verwendung programmiersprachlicher Ausdrucksmittel sowie Anwendungen aus der Signalverarbeitung. Das Buch ermöglicht einen systematischen Einstieg in den Entwurf digitaler Systeme. Es vermittelt dem Leser die notwendigen Grundlagen zum Verstehen weiterführender Literatur. Mit LEVis und COVis stehen zusätzlich zwei Visualisierungs-/Simulationsprogramme zur Verfügung, die übers Internet unter der URL http://rosw.cs.tu-berlin.de/sonstiges zugänglich sind.
Liebig Logischer Entwurf digitaler Systeme jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Boolesche Algebra, Automaten, Algorithmen.- Schaltnetze, Schaltketten.- Asynchron-Schaltwerke.- Synchron-Schaltwerke.- Prozessoren, Spezialrechner, Universalrechner.


3 Asynchron-Schaltwerke (S. 198-199)

3.1 Schaltungsstruktur und Funktionsweise

Asynchron-Schaltwerke haben im Gegensatz zu Schaltnetzen speichernden Charakter, ein „Gedächtnis". Ihrer Struktur nach sind Asynchron-Schaltwerke rückgekoppelte Schaltnetze, wobei nur ein Teil der Ausgänge rückgekoppelt ist (Vektor u), der andere Teil nicht (Vektor y). Demgemäß erscheint die Funktion des Schaltnetzes aufgespalten in zwei Teile: die Übergangsfunktion f und die Ausgangsfunktion g. Mit der Signalverzögerung ihrer Bauelemente bewirkt f einen Speichereffekt (hochgestellter Index d – delay – an u, also ui einen Moment später).1 Diese Delays werden i.allg. nicht extra aufgebaut, ggf. zur Verlängerung der in den Bauelementen vorhandenen Signalverzögerungen (siehe 3.4). – Die Funktion von Asynchron-Schaltwerken folgt den Gesetzen der Automatentheorie, wobei die Zustandsfortschaltung aufgrund der Änderung der Eingangsignale (Vektor x) geschieht (siehe ereignisgesteuerte Zustandsfortschaltung, S. 70). Damit läßt sich der Begriff Asynchron-Schaltwerk wie folgt definieren: • Ein Asynchron-Schaltwerk ist die schaltungstechnische Realisierung eines booleschen Automaten/Algorithmus. Es wird mathematisch beschrieben durch die Übergangsfunktion f und die Ausgangsfunktion g mit u als Rückkopplungsvektor, x als Eingangsvektor und y als Ausgangsvektor.

In der Praxis ist es bei Asynchron-Schaltwerken durchaus möglich, ja bei großen Systemen sogar üblich, daß Rückkopplungen wie auch Eingänge über Taktsignale synchronisiert sind. Solche Schaltwerke spielen gewissermaßen eine Doppelrolle: Sie werden Synchron-Schaltwerke genannt, wenn der Takt als rein technisches Signal betrachtet wird und Zustandsänderungen ausschließlich durch den Takt erfolgen. Sie werden Asynchron-Schaltwerke genannt, wenn der Takt wie alle anderen Signale, nämlich als rein logisches Signal behandelt wird, d.h., wenn Zustandsänderungen nicht nur durch den Takt, sondern durch mindestens ein weiteres Signal möglich sind.

Natürlich sind alle Schaltwerke, bei denen wenigstens ein Signal nicht taktsynchronisiert ist, keine Synchron-Schaltwerke, sondern Asynchron-Schaltwerke, Schaltwerke ganz ohne Taktsignale sind per se Asynchron-Schaltwerke. Man spricht hinsichtlich ihrer Zustandsfortschaltung von asynchronem Verhalten und hinsichtlich Entwurf und Darstellung von Asynchrontechnik.

Zur Signalverzögerung. Bild 3-1 zeigt eine sehr einfache Übergangsfunktion, gebildet mit einem Minimum an Variablen: nämlich die ODER-Verknüpfung mit einer einzigen Rückkopplungs- und einer einzigen Eingangsvariablen. Zwei Interpretationen sind möglich:

1. Unter der Annahme nicht existierender Signalverzögerungen in der Verknüpfung stellt die Übergangsfunktion eine Gleichung dar mit der Maßgabe, sie z.B. mit Hilfe einer Tabelle zu lösen (Interpretation Bestimmungsgleichung), wie man sieht, existieren nur für 3 von 4 Kombinationen von u- und x-Werten Lösungen der Gleichung.


Hans Liebig1939 in Ebersbach geboren. 1958–1963 Studium der Elektrotechnik an der Technischen Hochschule München; 1963–1965 Entwicklungsingenieur im Fachgebiet Informationstechnik – Elektronische Rechenanlagen – bei TELEFUNKEN in Konstanz; 1965–1970 wissenschaftlicher Assistent am Institut für Informationsverarbeitung der Technischen Universität Berlin; ab 1970 Professor für Informatik an der Technischen Universität Berlin. Seit 1968 Vorlesungen über Logischer Entwurf digitaler Systeme, über Rechnerorganisation sowie über Prinzipien der Rechnerstrukturen.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.