Limnios / Girardin | Applied Probability | Buch | 978-3-030-07352-7 | www.sack.de

Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

Limnios / Girardin

Applied Probability

From Random Sequences to Stochastic Processes
Softcover Nachdruck of the original 1. Auflage 2018
ISBN: 978-3-030-07352-7
Verlag: Springer International Publishing

From Random Sequences to Stochastic Processes

Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 423 g

ISBN: 978-3-030-07352-7
Verlag: Springer International Publishing


This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.

Limnios / Girardin Applied Probability jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Notation iiiPreface ix1 Independent Random Sequences 11.1 Denumerable Sequences . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Sequences of Events . . . . . . . . . . . . . . . . . . . . . 71.1.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 91.2 Analytic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2.1 Generating Functions . . . . . . . . . . . . . . . . . . . . 121.2.2 Characteristic Functions . . . . . . . . . . . . . . . . . . . 131.2.3 Laplace Transforms . . . . . . . . . . . . . . . . . . . . . 151.2.4 Moment Generating Functions and Cram´er Transforms . 171.2.5 From Entropy to Entropy Rate . . . . . . . . . . . . . . . 191.3 Sums and Random Sums . . . . . . . . . . . . . . . . . . . . . . . 231.3.1 Sums of Independent Variables . . . . . . . . . . . . . . . 231.3.2 Random Sums . . . . . . . . . . . . . . . . . . . . . . . . 271.3.3 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . 291.4 Convergence of Random Sequences . . . . . . . . . . . . . . . . . 301.4.1 Different Types of Convergence . . . . . . . . . . . . . . . 301.4.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . 331.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Conditioning and Martingales 512.1 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512.1.1 Conditioning with Respect to an Event . . . . . . . . . . 522.1.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . 532.1.3 Conditional Distributions . . . . . . . . . . . . . . . . . . 562.1.4 Conditional Expectation . . . . . . . . . . . . . . . . . . . 572.1.5 Conditioning and Independence . . . . . . . . . . . . . . . 632.1.6 Practical Determination . . . . . . . . . . . . . . . . . . . 652.2 The Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . 682.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712.4 Discrete-Time Martingales . . . . . . . . . . . . . . . . . . . . . . 732.4.1 Definitions and Properties . . . . . . . . . . . . . . . . . . 732.4.2 Classical Inequalities . . . . . . . . . . . . . . . . . . . . . 782.4.3 Martingales and Stopping Times . . . . . . . . . . . . . . 812.4.4 Convergence of Martingales . . . . . . . . . . . . . . . . . 842.4.5 Square Integrable Martingales . . . . . . . . . . . . . . . . 862.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 Markov Chains 993.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 993.1.1 Transition Functions with Examples . . . . . . . . . . . . 993.1.2 Martingales and Markov Chains . . . . . . . . . . . . . . 1073.1.3 Stopping Times and Markov Chains . . . . . . . . . . . . 1093.2 Classification of States . . . . . . . . . . . . . . . . . . . . . . . . 1113.3 Stationary Distribution and Asymptotic Behavior . . . . . . . . . 1163.4 Periodic Markov chains . . . . . . . . . . . . . . . . . . . . . . . 1233.5 Finite Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 1273.5.1 Specific Properties . . . . . . . . . . . . . . . . . . . . . . 1273.5.2 Application to Reliability . . . . . . . . . . . . . . . . . . 1323.6 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . 1353.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394 Continuous Time Stochastic Processes 1534.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534.2 Stationarity and Ergodicity . . . . . . . . . . . . . . . . . . . . . 1604.3 Processes with Independent Increments . . . . . . . . . . . . . . 1664.4 Point Processes on the Line . . . . . . . . . . . . . . . . . . . . . 1684.4.1 Basics on General Point Processes . . . . . . . . . . . . . 1694.4.2 Renewal Processes . . . . . . . . . . . . . . . . . . . . . . 1714.4.3 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . 1754.4.4 Asymptotic Results for Renewal Processes . . . . . . . . . 1774.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1815 Markov and Semi-Markov Processes 1895.1 Jump Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 1895.1.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 1895.1.2 Transition Functions . . . . . . . . . . . . . . . . . . . . . 1925.1.3 Infinitesimal Generators and Kolmogorov’s Equations . . 1955.1.4 Embedded Chains and Classification of States . . . . . . . 1975.1.5 Stationary Distribution and Asymptotic Behavior . . . . 2035.2 Semi-Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 2075.2.1 Markov Renewal Processes . . . . . . . . . . . . . . . . . 2075.2.2 Classification of States and Asymptotic Behavior . . . . . 2105.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Further Reading 225


Valérie Girardin received her Ph.D. in Probability from the Université Paris-Sud in Orsay, France. She teaches analysis, probability and statistics to various levels of students, including future secondary school teachers in mathematics, future engineers and researchers. Her research interests include diverse aspects of stochastic processes, from theory to applied statistics, with a particular interest in information theory and biology.

Nikolaos Limnios graduated from the Aristotle University of Thessaloniki and Polytechnic School of Thesaloniki, Greece. He received his Ph.D. and his Doctorat d’Etat  from the Université de Technologie de Compiègne (UTC), France, where he is now a full professor. He teaches probability,  statistics and stochastic processes to future engineers. His research interests in stochastic processes  and statistics include Markov, semi-Markov processes, branching processes, random evolutions and their applications in biology, reliability, earthquake, population evolutions, among other topics. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.