E-Book, Englisch, 301 Seiten
Reihe: Optical Networks
López / Velasco Elastic Optical Networks
1. Auflage 2016
ISBN: 978-3-319-30174-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Architectures, Technologies, and Control
E-Book, Englisch, 301 Seiten
Reihe: Optical Networks
ISBN: 978-3-319-30174-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents advances in the field of optical networks - specifically on research and applications in elastic optical networks (EON). The material reflects the authors' extensive research and industrial activities and includes contributions from preeminent researchers and practitioners in optical networking. The authors discuss the new research and applications that address the issue of increased bandwidth demand due to disruptive, high bandwidth applications, e.g., video and cloud applications. The book also discusses issues with traffic not only increasing but becoming much more dynamic, both in time and direction, and posits immediate, medium, and long-term solutions throughout the text. The book is intended to provide a reference for network architecture and planning, communication systems, and control and management approaches that are expected to steer the evolution of EONs.
Dr. Lopez is a Technology Expert at Telefonica Global CTO units. He works on the IP and optical processes of the Telefonica group as well as in the research projects funded by the Telefonica group and the European Commission. He has wide experience from telecom industry to academe in his ten years career. He has co-authored more than 100 publications and contributed to IETF drafts. Dr. Velasco had devoted more than 25 years in the telecommunications industry for advanced research, development and deployment of optical networks. His recent research efforts at Universitat Politecnica de Catalunya have been focusing on network planning. He has co-authored more than 130 peer-reviewed journals and conference papers. He has served in the technical program committee of Optical Fiber Communications (OFC) conference and is currently serving as an associate editor of IEEE/OSA Journal of Optical Communications and Networking.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Chapter 1: Motivation;8
2.1;1.1 Bandwidth Variable Transponders;11
2.2;1.2 Flexgrid;11
2.2.1;1.2.1 Structure of the book;12
3;Chapter 2: Evolution from Wavelength-Switched to Flex-Grid Optical Networks;13
3.1;2.1 Introduction;14
3.2;2.2 The History of ITU Grids and Development from Fixed to Flex-Grid;14
3.3;2.3 Point-to-Point Fixed-Grid DWDM Architectures;16
3.4;2.4 WSS Technology: Fixed and Flex;18
3.5;2.5 ROADM Architectures;20
3.6;2.6 Performance of Fixed and Flex-Grid Networks;22
3.7;2.7 Migration to Flex-Grid;26
3.8;2.8 Metro/Core Network Architecture;29
3.9;2.9 Concluding Remarks;33
3.10;References;34
4;Chapter 3: Taking Advantage of Elastic Optical Networks;37
4.1;3.1 Introduction;38
4.1.1;3.1.1 Flex-Grid vs. EON;38
4.1.2;3.1.2 Demystifying EONs;39
4.2;3.2 Advanced Networking Features Exploiting Flex-Grid;44
4.2.1;3.2.1 Multi-layer Resilience in General;44
4.2.1.1; Case 1: Multi-layer Resilience Based on Elastic Flex-Rate Transceivers;46
4.2.1.2; Case 2: Transceiver Sliceability for Multi-layer Resilience;46
4.3;3.3 Flex-Grid in Metro-Regional Networks: Serving Traffic to BRAS Servers;48
4.4;3.4 Multi-layer Network Planning for Cost and Energy Minimization;51
4.5;3.5 Interconnecting Data Centres;53
4.5.1;3.5.1 Motivation;53
4.5.2;3.5.2 Dynamic Connection Requests;54
4.5.3;3.5.3 Transfer Mode Requests;57
4.6;3.6 Concluding Remarks;59
4.7;References;59
5;Chapter 4: Routing and Spectrum Allocation;61
5.1;4.1 Introduction;62
5.2;4.2 Basic Offline Planning Problems;63
5.2.1;4.2.1 Basic Concepts;63
5.2.2;4.2.2 Basic RSA Problem;64
5.2.3;4.2.3 Topology Design as a RSA Problem;66
5.2.4;4.2.4 Network Dimensioning as a RSA Problem;68
5.3;4.3 Solving Techniques;68
5.3.1;4.3.1 Large-Scale Optimization;69
5.3.2;4.3.2 Metaheuristics;70
5.3.3;4.3.3 RSA Algorithm for Single Demands;72
5.4;4.4 Use Case I: Tunable Transponders and Physical Layer Considerations;72
5.5;4.5 Use Case II: Gradual Network Design Problem;75
5.5.1;4.5.1 Problem Statement;76
5.5.2;4.5.2 Mathematical Model;76
5.5.3;4.5.3 Path Generation Algorithm;78
5.5.4;4.5.4 BRKGA Heuristic;80
5.6;4.6 Use Case III: Elastic Bandwidth Provisioning;81
5.6.1;4.6.1 Spectrum Allocation Policies;82
5.6.2;4.6.2 Spectrum Expansion/Contraction Policies;84
5.7; Concluding Remarks;85
5.8;References;86
6;Chapter 5: Transmission in Elastic Optical Networks;88
6.1;5.1 Introduction;89
6.2;5.2 System Impairments and Their Mitigation;92
6.2.1;5.2.1 System Impairments;93
6.2.1.1; Transmitter Impairments;93
6.2.1.2; Channel Impairments;94
6.2.1.3; Receiver Impairments;95
6.2.2;5.2.2 Digital Signal Processing for EONs;96
6.2.2.1; Digital Signal Processing Architectures;96
6.2.2.1.1;Blind DSP Architectures;97
6.2.2.1.2;Data-Aided DSP Architectures;97
6.2.2.2; Digital Signal Processing at the Transmitter;98
6.2.2.2.1;Impact of Component Quality on the System Performance;98
6.2.2.2.2;Advanced Digital Pre-compensation Techniques;99
6.2.3;5.2.3 Digital Signal Processing at the Receiver;101
6.2.3.1; Spectral Inversion;101
6.2.3.2; Digital Back-Propagation;102
6.2.3.3; Radio-Frequency—Pilot Tone;104
6.2.4;5.2.4 Compensation of ROADMs Cascade Through Optical Pre-emphasis;105
6.3;5.3 Next-Generation Bandwidth-Variable Transponders;106
6.3.1;5.3.1 Adaptive Choice of Modulation Format;108
6.3.2;5.3.2 Rate-Adaptive Coded Modulation;109
6.3.3;5.3.3 Generation and Multiplexing of Super-Channels;110
6.4;5.4 Outlook and Roadmap;113
6.5;5.5 Conclusions;114
6.6;References;116
7;Chapter 6: Node Architectures for Elastic and Flexible Optical Networks;122
7.1;6.1 Introduction;123
7.2;6.2 Requirements, Design Rules, and Criteria for Next Generation Flexible Optical Nodes;124
7.2.1;6.2.1 Literature Review on Legacy Architecture;124
7.2.2;6.2.2 Key Enabling Technologies;126
7.2.2.1; Wavelength Selective Switches;126
7.2.2.2; (Sliceable) Bandwidth Variable Transponders;126
7.2.2.3; Multicasting Switch;127
7.2.3;6.2.3 Design Rules;127
7.2.3.1; Flexibility;127
7.2.3.2; Reconfiguration;128
7.2.3.3; Colorless, Directionless, and Contentionless;128
7.2.3.4; Scalability: Modularity;129
7.2.3.5; Resilience;129
7.2.4;6.2.4 Performance Criteria;129
7.2.4.1; Capacity/Throughput;129
7.2.4.2; Switching Granularity;130
7.2.4.3; Physical Performance;130
7.3;6.3 Bypass/Express Node Architectures;131
7.3.1;6.3.1 Express Switch Architectures;131
7.3.1.1; Brief History of OXC Development;131
7.3.1.2; OXC Evolution;133
7.3.1.3; Impact of Intra-node Blocking on the Design of Large Port-Count OXCs;135
7.3.1.4; Architectures for Creating Large Port-Count OXCs [22, 23];136
7.3.1.4.1;Hierarchical Multi-granular Routing [24];136
7.3.1.4.2;Grouped Routing and ? Selective Add/Drop [30];137
7.3.1.4.3;Multi-granular Two-Stage Switching [32, 33];139
7.3.1.4.4;Interconnected Subsystem Architecture [34–36];139
7.4;6.4 Multi-layer Elastic and Flexible Add/Drop Node Architecture;141
7.4.1;6.4.1 Node Architectures and Interfaces That Address Different Multi-layer Use Cases;141
7.4.1.1; Sub-port Level Grooming;148
7.4.1.2; Port-Level Grooming;149
7.4.1.3; Wavelength Level Grooming;149
7.5;6.5 Multidimensional and Function Programmable Optical Node Architectures;149
7.5.1;6.5.1 Dimensions for Future Optical Nodes;149
7.5.2;6.5.2 Need for Multidimensionality in Future Optical Nodes;151
7.5.2.1; AoD Node Functionality and Operation;152
7.5.2.2; Scalability;153
7.5.2.3; Bandwidth Granularity and Adaptability;154
7.5.3;6.5.3 Optical Network Function Programmability;155
7.5.3.1; Node Level Synthesis and Programmability;155
7.5.3.2; Function Programmable OXCs;156
7.5.3.3; Optical Layer NFP;157
7.6;6.6 Summary;159
7.7;References;160
8;Chapter 7: Sliceable Bandwidth Variable Transponders;163
8.1;7.1 Introduction;164
8.2;7.2 Sliceable Bandwidth Variable Transponder Architectures;165
8.2.1;7.2.1 S-BVT Requirements;165
8.2.2;7.2.2 S-BVT Architecture;165
8.2.2.1; Flex Sub-Carrier Module;167
8.2.2.2; Sub-Carrier Generator Module;167
8.2.3;7.2.3 Example of an S-BVT Supporting 400 Gb/s;169
8.2.4;7.2.4 Component Technologies, Complexity, and Integration;172
8.2.5;7.2.5 S-BVT Programmability Perspectives;173
8.3;7.3 S-BVT Architectures Involving Multiple Layers;174
8.3.1;7.3.1 IP Layer Architectures Without S-BVT;175
8.3.2;7.3.2 How Does S-BVT Enable a Better IP Layer Architecture?;177
8.3.3;7.3.3 How to Interconnect Routers and S-BVTs;178
8.4;7.4 Network Planning Process Using S-BVTs;180
8.4.1;7.4.1 Network Planning Example;180
8.4.2;7.4.2 Mixed Integer Linear Programming Definition;181
8.5;7.5 Expected Savings from S-BVTs;184
8.5.1;7.5.1 Scenario Definition;184
8.5.2;7.5.2 Impact on the Number of Transponders;185
8.5.3;7.5.3 Impact on IP Layer Networks;186
8.5.4;7.5.4 Total CAPEX Savings of S-BVTs;188
8.6;7.6 Conclusions;190
8.7;References;191
9;Chapter 8: GMPLS Control Plane;193
9.1;8.1 Introduction to Control Plane Functionalities;195
9.1.1;8.1.1 Protocols;196
9.2;8.2 GMPLS Control Plane Architecture;197
9.2.1;8.2.1 Introduction to the GMPLS/PCE Architecture;197
9.2.2;8.2.2 Signalling (RSVP-TE);202
9.2.3;8.2.3 Resource Discovery and Topology Dissemination;204
9.2.3.1; Introduction to Routing, OSPF-TE and IS-IS-TE;204
9.2.3.2; BGP-LS;205
9.2.3.2.1;BGP-LS Session Establishment;205
9.2.3.2.2;Topology Exchange;206
9.2.3.2.3;Describing Nodes and Links in BGP-LS;206
9.3;8.3 Architecting the Control Plane for EON;207
9.3.1;8.3.1 Extending Signalling for EON;207
9.3.2;8.3.2 Path Computation in Flexi-Grid Networks;209
9.3.3;8.3.3 Resource Discovery;211
9.4;8.4 Multi-Domain EON Control Plane GMPLS & H-PCE Architecture;215
9.4.1;8.4.1 Hierarchical PCE;215
9.4.2;8.4.2 Hierarchical PCE Topology Construction;216
9.4.3;8.4.3 Inter-Domain Signalling;216
9.5;8.5 Conclusions;218
9.6;References;218
10;Chapter 9: Software Defined Networking (SDN) in Optical Networks;220
10.1;9.1 SDN Architecture;221
10.1.1;9.1.1 General Concepts;221
10.1.2;9.1.2 SDN Logical Partitioning;222
10.2;9.2 OpenFlow Protocol;223
10.2.1;9.2.1 Main OpenFlow Messages;225
10.3;9.3 SDN for Optical Networks: Reference Architecture;225
10.3.1;9.3.1 Challenges for Transport Network Abstraction;226
10.3.2;9.3.2 Flow Abstraction;227
10.3.3;9.3.3 Drivers;227
10.3.4;9.3.4 Virtualization;228
10.3.5;9.3.5 Northbound Application Layer Abstraction;228
10.3.6;9.3.6 Performance;229
10.4;9.4 OpenFlow for Optical Networks: Protocol Extensions;229
10.4.1;9.4.1 Basic OpenFlow Protocol Requirements;230
10.4.2;9.4.2 OpenFlow for Optical Circuit Switching;231
10.4.3;9.4.3 OpenFlow for Optical Transceiver Configuration and Monitoring;232
10.4.4;9.4.4 OpenFlow for Optical Burst and Packet Switching;233
10.5;9.5 NETCONF Protocol;234
10.5.1;9.5.1 Configuration of Packet Switches;234
10.5.2;9.5.2 Configuration of Optical Nodes;236
10.6;9.6 Examples and Use Cases;238
10.6.1;9.6.1 Use Case I: Restoration;238
10.6.1.1; Bitrate Squeezing and Multipath Restoration;238
10.6.1.2; The Bitrate Squeezing and Multipath Restoration Problem Statement;239
10.6.1.3; Example of SDN Implementation Supporting BATIDO;240
10.6.1.4; Evaluation on Recovery Time;241
10.6.2;9.6.2 Use Case II: Filter Configuration Optimization;242
10.6.2.1; Proposed Super-Filter Technique;242
10.6.2.2; Super-Filter Implementation, OpenFlow Extensions, and Experimental Demonstration;244
10.7;9.7 Conclusions;245
10.8;References;245
11;Chapter 10: Application-Based Network Operations (ABNO);248
11.1;10.1 General Concepts;249
11.2;10.2 Network Abstraction;249
11.2.1;10.2.1 Logically Centralized Control;249
11.2.2;10.2.2 Application-Driven Use-Cases;250
11.3;10.3 Network Control;251
11.3.1;10.3.1 Control Plane;252
11.3.2;10.3.2 Management Plane;253
11.3.3;10.3.3 Control Elements for Operating Optical Networks;255
11.3.3.1; Path Computation;255
11.3.3.2; Service Provisioning;255
11.3.3.3; OAM and Performance Monitoring;255
11.4;10.4 Distributed and Centralized Control Planes;256
11.4.1;10.4.1 Control Plane Architecture Evolution;256
11.4.1.1; Distributed Control;257
11.4.1.2; Centralized Control;258
11.4.1.3; Comparison of Distributed Versus Centralized;259
11.4.1.4; Hybrid Control Plane Models;259
11.5;10.5 Framework for Application-Based Network Operations;261
11.5.1;10.5.1 Functional Components;261
11.5.1.1; NMS and OSS;261
11.5.1.2; Application Service Coordinator;262
11.5.1.3; ABNO Controller;263
11.5.1.4; Policy Agent;263
11.5.1.5; OAM Handler;263
11.5.1.6; Path Computation Element;263
11.5.1.7; Network Database;264
11.5.1.8; Virtual Network Topology Manager;264
11.5.1.9; Provisioning Manager;265
11.5.2;10.5.2 South Bound Interfaces;265
11.6;10.6 Adaptive Network Manager;265
11.6.1;10.6.1 Interfaces;266
11.7;10.7 Adaptive Network Manager Use-Cases;267
11.7.1;10.7.1 Catastrophic Network Failure;267
11.8;10.8 Next Steps for ABNO-Based Control and Orchestration;268
11.8.1;10.8.1 Control and Orchestration of Virtual Content Distribution Network;269
11.9;References;270
12;Chapter 11: In-Operation Network Planning;271
12.1;11.1 Towards In-operation Network Planning;273
12.1.1;11.1.1 Drivers and Motivations for In-operation Network Planning;273
12.1.2;11.1.2 Migration Towards In-operation Network Planning;274
12.2;11.2 Architectures to Support In-operation Planning;276
12.2.1;11.2.1 Requirements to Support In-operation Planning;276
12.2.2;11.2.2 Existing Approaches for In-operation Network Planning;278
12.2.2.1; Reactive In-operation Planning;278
12.2.2.2; Periodic Planning;279
12.2.2.3; Preventive Planning;279
12.2.3;11.2.3 Relationship with the Control Plane;280
12.2.3.1; The Front-End/Back-End Architecture;280
12.2.3.2; Stateless PCE with GCO and ABNO;281
12.3;11.3 Main Use Cases;282
12.3.1;11.3.1 Use Case I: Virtual Network Topology Reconfiguration;282
12.3.2;11.3.2 Use Case II: Spectrum Defragmentation;285
12.3.3;11.3.3 Use Case III: After Failure Repair Re-optimization;289
12.4;11.4 Conclusions;293
12.5;References;293
13;Index;295




