Mailund | R 4 Data Science Quick Reference | E-Book | sack.de
E-Book

E-Book, Englisch, 232 Seiten, eBook

Mailund R 4 Data Science Quick Reference

A Pocket Guide to APIs, Libraries, and Packages
2. Auflage 2022
ISBN: 978-1-4842-8780-4
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Pocket Guide to APIs, Libraries, and Packages

E-Book, Englisch, 232 Seiten, eBook

ISBN: 978-1-4842-8780-4
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark



In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference , you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub..   What You'll LearnImplement applicable R 4 programming language specification featuresImport data with readrWork with categories using forcats, time and dates with lubridate, and strings with stringrFormat data using tidyr and then transform that data using magrittr and dplyrWrite functions with R for data science, data mining, and analytics-based applicationsVisualize data with ggplot2 and fit data to models using modelrWho This Book Is For Programmers new to R's data science, data mining, and analytics packages.  Some prior coding experience with R in general is recommended.
Mailund R 4 Data Science Quick Reference jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction. - 2. Importing Data: readr.- 3. Representing Tables: tibble. - 4. Tidy+select, 5. Reformatting Tables: tidyr.- 6. Pipelines: magrittr.- 7. Functional Programming: purrr. - 8. Manipulating Data Frames: dplyr. - 9. Working with Strings: stringr.- 10. Working with Factors: forcats. - 11. Working with Dates: lubridate. - 12. Working with Models: broom and modelr. - 13. Plotting: ggplot2.- 14. Conclusions.


Thomas Mailund is an associate professor at Aarhus University, Denmark. He has a background in math and computer science.  For the last decade, his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.  He has published Beginning Data Science in R, Functional Programming in R, and Metaprogramming in R with Apress as well as other books on R and C programming.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.