Mantoro / Lee / Ayu | Neural Information Processing | E-Book | sack.de
E-Book

E-Book, Englisch, 695 Seiten, eBook

Reihe: Theoretical Computer Science and General Issues

Mantoro / Lee / Ayu Neural Information Processing

28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I
1. Auflage 2021
ISBN: 978-3-030-92185-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I

E-Book, Englisch, 695 Seiten, eBook

Reihe: Theoretical Computer Science and General Issues

ISBN: 978-3-030-92185-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:Part I: Theory and algorithms; Part II: Theory and algorithms; human centred computing; AI and cybersecurity;Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  Part IV: Applications.
Mantoro / Lee / Ayu Neural Information Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Theory and Algorithms.- Metric Learning Based Vision Transformer for Product Matching.- Stochastic Recurrent Neural Network for Multistep Time Series Forecasting.- Speaker Verification with Disentangled Self-Attention.- Multi Modal Normalization.- A Focally Discriminative Loss for Unsupervised Domain Adaptation.- Automatic Drum Transcription with Label Augmentation using Convolutional Neural Networks.- Adaptive Curriculum Learning for Semi-Supervised Segmentation of 3D CT-Scans.- Genetic Algorithm and Distinctiveness Pruning in the Shallow Networks for VehicleX.- Stack Multiple Shallow Autoencoders into A Strong One: A New Reconstruction-based Method to Detect Anomaly.- Learning Discriminative Representation with Attention and Diversity for Large-scale Face Recognition.- Multi-task Perceptual Occlusion Face Detection with Semantic Attention Network.- RAIDU-Net: Image Inpainting via Residual Attention Fusion and Gated Information Distillation.- Sentence Rewriting with Few-Shot Learningfor Document-Level Event Coreference Resolution.- A Novel Metric Learning Framework for Semi-supervised Domain Adaptation.- Generating Adversarial Examples by Distributed Upsampling.- CPSAM: Channel and Position Squeeze Attention Module.- A Multi-Channel Graph Attention Network for Chinese NER.- GSNESR: A Global Social Network Embedding Approach for Social Recommendation.- Classification Models for Medical Data with Interpretative Rules.- Contrastive Goal Grouping for Policy Generalization in Goal-Conditioned Reinforcement Learning.- Global Fusion Capsule Network with Pairwise-Relation Attention Graph Routing.- MA-GAN: A Method Based on Generative Adversarial Network for Calligraphy Morphing.- One-Stage Open Set Object Detection with Prototype Learning.- Aesthetic-aware Recommender System for Online Fashion Products.- DAFD: Domain Adaptation Framework for Fake News Detection.- Document Image Classification Method based on Graph Convolutional Network.- Continual Learning of 3D Point Cloud Generators.- Attention-Based 3D ResNet for Detection of Alzheimer's Disease Process.- Generation of a Large-Scale Line Image Dataset with Ground Truth Texts from Page-Level Autograph Documents.- DAP-BERT: Differentiable Architecture Pruning of BERT.- Trash Detection On Water Channels.- Tri-Transformer Hawkes Process: Three Heads are better than one.- PhenoDeep: A deep Learning-based approach for detecting reproductive organs from digitized herbarium specimen images.- Document-level Event Factuality Identification using Negation and Speculation Scope.- Dynamic Network Embedding by Time-Relaxed Temporal Random Walk.- Dual-band Maritime Ship Classification based on Multi-layer Convolutional Features and Bayesian Decision.- Context-Based Anomaly Detection via Spatial Attributed Graphs in Human Monitoring.- Domain-Adaptation Person Re-Identification via Style Translation and Clustering.- Multimodal Named Entity Recognition Via Co-attention-based Method with Dynamic Visual Concept Expansion.- Ego Networks.- Cross-modal based Person Re-Identification via Channel Exchange and adversarial Learning.- SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs.- Deep Neuroevolution: Training Neural Networks using a Matrix-free Evolution Strategy.- Weighted P-Rank: A Weighted Article Ranking Algorithm Based on a Heterogeneous Scholarly Network.- Clustering Friendly Dictionary Learning.- Understanding Test-Time Augmentation.- SphereCF: Sphere Embedding for Collaborative Filtering.- Concordant Contrastive Learning for Semi-supervised Node Classification on Graph.- Improving Shallow Neural Networks via Local and Global Normalization.- Underwater Acoustic Target Recognition with Fusion Feature.- Evaluating Data Characterization Measures for Clustering Problems in Meta-learning.- ShallowNet: An Efficient Lightweight Text Detection Network Based on Instance Count-aware Supervision Information.- Image Periodization for Convolutional NeuralNetworks.- BCN-GCN: A Novel Brain Connectivity Network Classification Method via Graph Convolution Neural Network for Alzheimer's Disease.- Triplet Mapping for Continuously Knowledge Distillation.- A Prediction-Augmented AutoEncoder for Multivariate Time Series Anomaly Detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.