Marchthaler / Dingler | Kalman-Filter | E-Book | www.sack.de
E-Book

E-Book, Deutsch, 238 Seiten

Reihe: Computer Science and Engineering (German Language)

Marchthaler / Dingler Kalman-Filter

Einführung in die Zustandsschätzung und ihre Anwendung für eingebettete Systeme
2. Auflage 2024
ISBN: 978-3-658-43216-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Einführung in die Zustandsschätzung und ihre Anwendung für eingebettete Systeme

E-Book, Deutsch, 238 Seiten

Reihe: Computer Science and Engineering (German Language)

ISBN: 978-3-658-43216-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Dieses Lehrbuch befasst sich leicht verständlich mit der Theorie der Kalman-Filterung. Die Autoren geben damit eine Einführung in Kalman-Filter und deren Anwendung für eingebettete Systeme. Zusätzlich wird anhand konkreter Praxisbeispiele der Kalman-Filterentwurf demonstriert – Teilschritte werden im Buch ausführlich erläutert.Kalman-Filter sind die erste Wahl, um Störsignale auf den Sensorsignalen zu eliminieren. Dies ist von besonderer Bedeutung, da viele technische Systeme ihre prozessrelevanten Informationen über Sensoren gewinnen. Jeder Messwert eines Sensors weißt jedoch aufgrund verschiedener Ursachen einen Messfehler auf. Würde ein System nur auf Basis dieser ungenauen Sensorinformationen arbeiten, so wären viele Anwendungen, wie zum Beispiel ein Navigationssystem oder autonome arbeitende Systeme, nicht möglich.Das Buch ist geeignet für interessierte Bachelor- und Master-Studierende der Fachrichtungen Informatik, Maschinenbau, Elektrotechnik undMechatronik. Ebenso ist das Buch eine Hilfe für Ingenieure und Wissenschaftler, die ein Kalman-Filter z. B. für die Datenfusion oder die Schätzung unbekannter Größen in Echtzeitanwendungen einsetzen möchten.

Marchthaler / Dingler Kalman-Filter jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Einführendes Beispiel.- Zustandsraumbeschreibung.- Wahrscheinlichkeitstheorie.- Signaltheorie.- Klassisches Kalman-Filter.- Adaptiver Kalman-Filter (ROSE-Filter).- Nichtlineare Kalman Filter.- Systemrauschen.- Gütemaße.- Prinzipielles Vorgehen.- Beispiel: Bias Schätzung.- Beispiel: Kinematische Modelle.- Beispiel: Messrauschen mit Offset.- Beispiel: Alternatives Bewegungsmodell der Mondfähre.- Beispiel: Kovarianzmatrix Messrauschen.- Beispiel: Umfeldsensor mit ROSE-Filter.- Beispiel: Fahrstreifenerkennung.- Beispiel: Gleichstrommotor.- Beispiel: Positions- und Geschwindigkeitsschätzung mit EKF-Filter.


Prof. Dr. Reiner  Marchthaler hat eine Professur für das Lehrgebiet „Embedded Systems“ in der Fakultät Informationstechnik an der Hochschule Esslingen mit dem Spezialgebiet autonom fahrende Fahrzeuge.

Sebastian Dingler  studierte  Technische Informatik und Informatik an der Hochschule Esslingen und am Karlsruher Institut für Technologie (KIT).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.