Marie | From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes | Buch | 978-3-031-95637-9 | www.sack.de

Buch, Englisch, 184 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 463 g

Reihe: Frontiers in Probability and the Statistical Sciences

Marie

From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes


Erscheinungsjahr 2025
ISBN: 978-3-031-95637-9
Verlag: Springer

Buch, Englisch, 184 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 463 g

Reihe: Frontiers in Probability and the Statistical Sciences

ISBN: 978-3-031-95637-9
Verlag: Springer


This book is about copies-based nonparametric estimation of the drift function in stochastic differential equations (SDEs) driven by Brownian motion, a jump process, or fractional Brownian motion. While the estimators of the drift function in SDEs are classically computed from one long-time observation of the ergodic stationary solution, here the estimation framework – which is part of functional data analysis – involves multiple copies of the (non-stationary) solution observed over a short-time interval. Two kinds of nonparametric estimators are investigated for SDE models, first presented in the regression framework: the projection least squares estimator and the Nadaraya-Watson estimator. Adaptive procedures are provided for possible applications in statistical learning. Primarily intended for researchers in statistical inference for stochastic processes who are interested in the copies-based observation scheme, the book will also be useful for graduate and PhD students in probability and statistics, thanks to its multiple reminders of the requisite theory, especially the chapter on nonparametric regression.

Marie From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Nonparametric regression: a detailed reminder.- The projection least squares estimator of the drift function.- Going further with the projection least squares method: diffusions with jumps and fractional diffusions.- The Nadaraya-Watson estimator of the drift function.


Nicolas Marie is an associate professor in the Modal’X department at Paris Nanterre University. He received his PhD in probability in 2012, and his habilitation in statistics and probability in 2019. First, in the rough paths theory framework, he focused on constrained fractional diffusions. Then, since 2017, Nicolas Marie contributes to investigate the copies-based statistical inference for diffusions and fractional diffusions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.