Matsumoto | Classical Pendulum Feels Quantum Back-Action | E-Book | www.sack.de
E-Book

E-Book, Englisch, 110 Seiten

Reihe: Springer Theses

Matsumoto Classical Pendulum Feels Quantum Back-Action


1. Auflage 2016
ISBN: 978-4-431-55882-8
Verlag: Springer Japan
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 110 Seiten

Reihe: Springer Theses

ISBN: 978-4-431-55882-8
Verlag: Springer Japan
Format: PDF
Kopierschutz: 1 - PDF Watermark



In this thesis, ultimate sensitive measurement for weak force imposed on a suspended mirror is performed with the help of a laser and an optical cavity for the development of gravitational-wave detectors. According to the Heisenberg uncertainty principle, such measurements are subject to a fundamental noise called quantum noise, which arises from the quantum nature of a probe (light) and a measured object (mirror). One of the sources of quantum noise is the quantum back-action, which arises from the vacuum fluctuation of the light. It sways the mirror via the momentum transferred to the mirror upon its reflection for the measurement. The author discusses a fundamental trade-off between sensitivity and stability in the macroscopic system, and suggests using a triangular cavity that can avoid this trade-off. The development of an optical triangular cavity is described and its characterization of the optomechanical effect in the triangular cavity is demonstrated. As a result, for the first time in the world the quantum back-action imposed on the 5-mg suspended mirror is significantly evaluated. This work contributes to overcoming the standard quantum limit in the future.

Matsumoto Classical Pendulum Feels Quantum Back-Action jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Supervisor's Foreword;7
2;Acknowledgments;9
3;Contents;11
4;1 Introduction;13
4.1;1.1 Optomechanical Effects;13
4.1.1;1.1.1 Quantum Noise Limit;17
4.2;1.2 Observation of Quantum Back-Action;19
4.3;References;20
5;2 Theory of Optomechanics;24
5.1;2.1 Optical System;24
5.1.1;2.1.1 The Quantized Electromagnetic Field;24
5.1.2;2.1.2 The Heisenberg Uncertainty Principle;26
5.1.3;2.1.3 States of Light;26
5.1.4;2.1.4 Optical Cavity;28
5.2;2.2 Mechanical Oscillator;31
5.2.1;2.2.1 Mechanical Normal Modes;32
5.2.2;2.2.2 Mechanical Dissipation & Dilution Techniques;34
5.3;2.3 Optomechanical System;37
5.3.1;2.3.1 Theoretical Derivation of Quantum Back-Action;37
5.3.2;2.3.2 Phase-Induced Radiation Pressure;42
5.3.3;2.3.3 Photo-Thermal Shot Noise;44
5.3.4;2.3.4 Raman Decoherence;44
5.4;References;45
6;3 Application of Optomechanics;47
6.1;3.1 Towards Gravitational Wave Astronomy;47
6.1.1;3.1.1 Background of This Section;49
6.1.2;3.1.2 Back-Action Evasion Method;49
6.2;3.2 Test of Quantum Mechanics;50
6.2.1;3.2.1 Direct Test of Interference of a Massive Pendulum Via Single-Photon Coupling;52
6.2.2;3.2.2 Test of Gravity-Induced Decoherece Models by Linear Continuous Measurement;54
6.2.3;3.2.3 Test of Spontaneous Wave-Function Collapse Models Using a Classical Pendulum;55
6.3;References;57
7;4 Optical Torsional Spring;60
7.1;4.1 Trade-Off Relationship;60
7.2;4.2 Model of a Triangular Optical Cavity;63
7.3;4.3 Experimental Setup;64
7.4;4.4 Experimental Results & Discussions;66
7.5;References;68
8;5 Experimental Setup;69
8.1;5.1 All Aspects of the Experiment;69
8.2;5.2 Partial Aspects of the Experiment;74
8.2.1;5.2.1 Mechanical Oscillator;74
8.2.2;5.2.2 Laser Source;76
8.2.3;5.2.3 Calibration;77
8.2.4;5.2.4 Detection System and Vacuum System;85
8.3;References;86
9;6 Experimental Results;88
9.1;6.1 Optical Characterization;88
9.2;6.2 Mechanical Characterization;90
9.3;6.3 Optomechanical Characterization;93
9.4;6.4 Measurement of the Back-Action and Discussions;94
9.5;References;98
10;7 The Future;100
10.1;7.1 Future Improvement;100
10.2;7.2 Towards Ground-State Cooling;101
10.3;7.3 Towards Beating the SQL;102
10.4;References;103
11;8 Conclusions;104
12;Appendix A Intensity Stabilization;106
13;Curriculum Vitae;110



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.