E-Book, Englisch, 110 Seiten
Reihe: Springer Theses
Matsumoto Classical Pendulum Feels Quantum Back-Action
1. Auflage 2016
ISBN: 978-4-431-55882-8
Verlag: Springer Japan
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 110 Seiten
Reihe: Springer Theses
ISBN: 978-4-431-55882-8
Verlag: Springer Japan
Format: PDF
Kopierschutz: 1 - PDF Watermark
In this thesis, ultimate sensitive measurement for weak force imposed on a suspended mirror is performed with the help of a laser and an optical cavity for the development of gravitational-wave detectors. According to the Heisenberg uncertainty principle, such measurements are subject to a fundamental noise called quantum noise, which arises from the quantum nature of a probe (light) and a measured object (mirror). One of the sources of quantum noise is the quantum back-action, which arises from the vacuum fluctuation of the light. It sways the mirror via the momentum transferred to the mirror upon its reflection for the measurement. The author discusses a fundamental trade-off between sensitivity and stability in the macroscopic system, and suggests using a triangular cavity that can avoid this trade-off. The development of an optical triangular cavity is described and its characterization of the optomechanical effect in the triangular cavity is demonstrated. As a result, for the first time in the world the quantum back-action imposed on the 5-mg suspended mirror is significantly evaluated. This work contributes to overcoming the standard quantum limit in the future.
Autoren/Hrsg.
Weitere Infos & Material
1;Supervisor's Foreword;7
2;Acknowledgments;9
3;Contents;11
4;1 Introduction;13
4.1;1.1 Optomechanical Effects;13
4.1.1;1.1.1 Quantum Noise Limit;17
4.2;1.2 Observation of Quantum Back-Action;19
4.3;References;20
5;2 Theory of Optomechanics;24
5.1;2.1 Optical System;24
5.1.1;2.1.1 The Quantized Electromagnetic Field;24
5.1.2;2.1.2 The Heisenberg Uncertainty Principle;26
5.1.3;2.1.3 States of Light;26
5.1.4;2.1.4 Optical Cavity;28
5.2;2.2 Mechanical Oscillator;31
5.2.1;2.2.1 Mechanical Normal Modes;32
5.2.2;2.2.2 Mechanical Dissipation & Dilution Techniques;34
5.3;2.3 Optomechanical System;37
5.3.1;2.3.1 Theoretical Derivation of Quantum Back-Action;37
5.3.2;2.3.2 Phase-Induced Radiation Pressure;42
5.3.3;2.3.3 Photo-Thermal Shot Noise;44
5.3.4;2.3.4 Raman Decoherence;44
5.4;References;45
6;3 Application of Optomechanics;47
6.1;3.1 Towards Gravitational Wave Astronomy;47
6.1.1;3.1.1 Background of This Section;49
6.1.2;3.1.2 Back-Action Evasion Method;49
6.2;3.2 Test of Quantum Mechanics;50
6.2.1;3.2.1 Direct Test of Interference of a Massive Pendulum Via Single-Photon Coupling;52
6.2.2;3.2.2 Test of Gravity-Induced Decoherece Models by Linear Continuous Measurement;54
6.2.3;3.2.3 Test of Spontaneous Wave-Function Collapse Models Using a Classical Pendulum;55
6.3;References;57
7;4 Optical Torsional Spring;60
7.1;4.1 Trade-Off Relationship;60
7.2;4.2 Model of a Triangular Optical Cavity;63
7.3;4.3 Experimental Setup;64
7.4;4.4 Experimental Results & Discussions;66
7.5;References;68
8;5 Experimental Setup;69
8.1;5.1 All Aspects of the Experiment;69
8.2;5.2 Partial Aspects of the Experiment;74
8.2.1;5.2.1 Mechanical Oscillator;74
8.2.2;5.2.2 Laser Source;76
8.2.3;5.2.3 Calibration;77
8.2.4;5.2.4 Detection System and Vacuum System;85
8.3;References;86
9;6 Experimental Results;88
9.1;6.1 Optical Characterization;88
9.2;6.2 Mechanical Characterization;90
9.3;6.3 Optomechanical Characterization;93
9.4;6.4 Measurement of the Back-Action and Discussions;94
9.5;References;98
10;7 The Future;100
10.1;7.1 Future Improvement;100
10.2;7.2 Towards Ground-State Cooling;101
10.3;7.3 Towards Beating the SQL;102
10.4;References;103
11;8 Conclusions;104
12;Appendix A Intensity Stabilization;106
13;Curriculum Vitae;110




