E-Book, Englisch, 1316 Seiten
Misra Handbook of Performability Engineering
1. Auflage 2008
ISBN: 978-1-84800-131-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 1316 Seiten
ISBN: 978-1-84800-131-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dependability and cost effectiveness are primarily seen as instruments for conducting international trade in the free market environment. These factors cannot be considered in isolation of each other. This handbook considers all aspects of performability engineering. The book provides a holistic view of the entire life cycle of activities of the product, along with the associated cost of environmental preservation at each stage, while maximizing the performance.
Professor Krishna B. Misra is principal consultant at RAMS Consultants. He has worked for the Indian Institute of Technology, Roorkee; the Indian Institute of Technology, Kharagpur, which he also founded; and the Reliability Engineering Centre. In previous years Professor Misra has also been appointed Director-Grade-Scientist at the National Environmental Engineering Research Institute and Director of the North Eastern Regional Institute of Science and Technology.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;7
2;Prologue;9
2.1;Performability Engineering: Its Promise and Challenge;9
3;Preface;11
4;Acknowledgements;15
5;Contents;17
6;1 Performability Engineering: An Essential Concept in the 21st Century;49
6.1;1.1 Introduction;49
6.2;1.2 Technology Can Help;52
6.3;1.3 Sustainability Principles;53
6.4;1.4 Sustainable Products and Systems;53
6.5;1.5 Economic and Performance Aspects;55
6.6;1.6 Futuristic System Designs;57
6.7;1.7 Performability;58
6.8;1.8 Performability Engineering;59
6.9;1.9 Conclusion;60
6.10;References;60
7;2 Engineering Design: A Systems Approach;61
7.1;2.1 Introduction;61
7.2;2.2 The Concept of a System;62
7.3;2.3 Characterization of a System;63
7.4;2.4 Design Characteristics;65
7.5;2.5 Engineering Design;66
7.6;2.6 The System Design Process;67
7.7;2.7 User Interaction;71
7.8;2.8 Conclusions;72
7.9;References;72
8;3 A Practitioner’s View of Quality, Reliability and Safety1;73
8.1;3.1 Introduction;73
8.2;3.2 Reliability;78
8.3;3.3 Testing;81
8.4;Safety;83
8.5;3.5 Quality, Reliability and Safety Standards;84
8.6;3.6 Managing Quality, Reliability and Safety;87
8.7;3.7 Conclusions References;88
9;4 Product Design Optimization;89
9.1;4.1 Introduction;89
9.2;4.2 Progressive Product Design Circumstances;90
9.3;4.3 Evaluation Criteria for Product Designs;91
9.4;4.4 Fundamentals of Product Design Optimization;92
9.5;4.5 Strategies of Advanced Product Design Optimization;94
9.6;4.6 Methodologies and Procedures for Product Design Optimization;98
9.7;4.7 Design Optimization for Creativity and Balance in Product Manufacturing;102
9.8;4.8 Conclusions References;103
10;5 Constructing a Product Design for the Environment Process;105
10.1;5.1 Introduction;105
10.2;5.2 A Decision-making View of Product Development Processes;106
10.3;5.3 Environmental Objectives;108
10.4;5.4 Product-level Environmental Metrics;110
10.5;5.5 The New DfE Process;113
10.6;5.6 Analysis of the DfE Process;115
10.7;5.7 Conclusions;116
10.8;References;117
11;6 Dependability Considerations in the Design of a System;119
11.1;6.1 Introduction;119
11.2;6.2 Survivability;119
11.3;6.3 System Effectiveness;121
11.4;6.4 Attributes of System Effectiveness;122
11.5;6.5 Life-cycle Costs (LCC);125
11.6;6.6 System Worth;126
11.7;6.7 Safety;126
11.8;References;128
12;7 Designing Engineering Systems for Sustainability;129
12.1;7.1 Introduction;129
12.2;7.2 Sparing and Availability;132
12.3;7.3 Technology Obsolescence;138
12.4;7.4 Technology Insertion;144
12.5;7.5 Concluding Comments;149
12.6;References;149
13;8 The Management of Engineering;153
13.1;8.1 Introduction;153
13.2;8.2 From Science to Engineering;155
13.3;8.3 Engineering in Society;157
13.4;8.4 Conclusions;161
13.5;References;163
14;9 Engineering Versus Marketing: An Appraisal in a Global Economic Environment;165
14.1;9.1 Introduction;165
14.2;9. 2 Creating Product Values with Low Cost and High Quality;166
14.3;9.3 Strategic Implications of Global Standardization;168
14.4;9.4 The Dynamic Nature of the Global Strategy;169
14.5;9.5 A New Strategy for Dynamic Globalization;171
14.6;9.6 Conclusions References;173
15;10 The Performance Economy: Business Models for the Functional Service Economy;175
15.1;10.1 Introduction;175
15.2;10.2 The Consequences of Traditional Linear Thought;177
15.3;10.3 Resource-use Policies Are Industrial Policies;177
15.4;10.4 The Problem of Oversupply;178
15.5;10.5 The Genesis of a Sustainable Cycle;180
15.6;10.6 The Factor Time – Creating Jobs at Home;181
15.7;10.7 Strategic and Organizational Changes;182
15.8;10.8 Obstacles, Opportunities, and Trends;184
15.9;10.9 New Metrics to Measure Success in the Performance Economy;184
15.10;10.10 Regionalization of the Economy;185
15.11;10.11 Conclusions;186
15.12;References;186
16;11 Cleaner Production and Industrial Ecology: A Dire Need for 21st Century Manufacturing;187
16.1;11.1 Introduction;187
16.2;11.2 Different Levels of the Dissemination of Preventive Concepts;189
16.3;11.3 Practical Experiences and Types of Embeddedness;190
16.4;11.4 Industrial Ecology Programs in the Rotterdam Harbor Area;195
16.5;11.5 Lessons Learned on the Introduction and Dissemination of Cleaner Production and Industrial Ecology;199
16.6;11.6 Conclusions and Recommendations;201
16.7;References;203
17;12 Quality Engineering and Management;205
17.1;12.1 Introduction;205
17.2;12.2 Quality Control;207
17.3;12.3 Quality Planning;210
17.4;12.4 Quality Assurance;211
17.5;12.5 Quality Improvement;212
17.6;12.6 Quality Costs;212
17.7;12.7 Quality Management System;212
17.8;12.8 Total Quality Management;213
17.9;12.9 ISO Certification;214
17.10;12.10 Six Sigma;214
17.11;12.11 Product Life-cycle Management;216
17.12;12.12 Other Quality Related Initiatives;216
17.13;References;218
18;13 Quality Engineering: Control, Design and Optimization;219
18.1;13.1 Introduction;219
18.2;Quality;220
18.3;13.4;225
18.4;line;225
19;14 Statistical Process Control;235
19.1;14.1 Introduction;235
19.2;14.2 Control Charts;235
19.3;14.3 Control Charts for Variables;238
19.4;14.4 Control Charts for Attributes;243
19.5;14.5 Engineering Process Control ( EPC);246
19.6;14.6 Process Capability Analysis;246
19.7;References;247
20;15 Engineering Process Control: A Review;251
20.1;15.1 Introduction;251
20.2;15.2 Notation;254
20.3;15.3 Stochastic Models;254
20.4;15.4 Optimal Feedback Controllers;257
20.5;15.5 Setup Adjustment Problem;262
20.6;15.6 Run-to-run Process Control;263
20.7;15.7 SPC and EPC as Complementary Tools;267
20.8;References;269
21;16 Six Sigma – Status and Trends;273
21.1;16.1 Introduction;273
21.2;16.2 Management by Metrics;275
21.3;.;276
21.4;16.3 Six Sigma Project Selection;276
21.5;16.4 DMAIC Methodology;277
21.6;16.5 Trends in Six Sigma;279
21.7;16.6 Conclusions;280
21.8;References;281
22;17 Computer Based Robust Engineering;283
22.1;17.1 Introduction;283
22.2;17.2 Robust Software Testing;289
22.3;References;292
23;18 Integrating a Continual Improvement Process with the Product Development Program;293
23.1;18.1 Introduction 18.2 Define a Quality Management;293
23.2;System;293
23.3;18.3 Deploy the Quality Management System;297
23.4;18.4 Continual Improvement;298
23.5;18.5 Conclusions;298
23.6;References;299
24;19 Reliability Engineering: A Perspective;301
24.1;19.1 Introduction;301
24.2;19.2 Problems of Concern in Reliability Engineering;309
24.3;19.3 Reliability Prediction Methodology;314
24.4;19.4 System Reliability Evaluation;322
24.5;19.5 Alternative Approaches;327
24.6;19.6 Reliability Design Procedure;328
24.7;19.7 Reliability Testing;328
24.8;19.8 Reliability Growth;331
24.9;References;332
25;20 Tampered Failure Rate Load-Sharing Systems: Status and Perspectives;339
25.1;20.1 Introduction;339
25.2;20.2 The Basics of Load-sharing Systems;341
25.3;20.3 Load-sharing Models;343
25.4;20.4 System Description;347
25.5;out-of-;348
25.6;Systems with Identical;348
25.7;Components;348
25.8;20.6;351
25.9;out-of-;351
25.10;Systems with;351
25.11;Non-;351
25.12;identical;351
25.13;Components;351
25.14;20.7 Conclusions;353
25.15;References;353
26;21 O(kn) Algorithms for Analyzing Repairable and Non-repairable k-out-of-n:G Systems;357
26.1;21.1 Introduction;357
26.2;21.2 Background;358
26.3;21.3 Non-repairable k-out-of-n Systems;359
26.4;21.4 Repairable k-out-of-n System;362
26.5;21.5 Some Special Cases;363
26.6;21.6 Conclusions and Future Work;367
26.7;References;367
27;22 Imperfect Coverage Models: Status and Trends;369
27.1;22.1 Introduction;369
27.2;22.2 A Brief History of Solution Techniques;370
27.3;22.3 Fault and Error Handling Models;372
27.4;22.4 Single-fault Models;375
27.5;Multi-fault Models;378
27.6;Markov Models for System Reliability;379
27.7;22.7 The Combinatorial Method for System Reliability with Single- fault Models;381
27.8;Combinatorial Method for System Reliability with Multi- fault Models;387
27.9;22.9 Optimal System Designs;393
27.10;22.10 Conclusions and Future Work;394
27.11;References;394
28;23 Reliability of Phased-mission Systems;397
28.1;23.1 Introduction;397
28.2;23.2 Types of Phased-mission Systems;398
28.3;23.3 Analytical Modeling Techniques;399
28.4;23.4 BDD Based PMS Analysis;405
28.5;23.5 Conclusions;415
28.6;References;415
29;24 Reliability of Semi-Markov Systems in Discrete Time: Modeling and Estimation;417
29.1;24.1 Introduction;417
29.2;24.2 The Semi-Markov Setting;418
29.3;24.3 Reliability Modeling;421
29.4;24.4 Reliability Estimation;423
29.5;24.5 A Numerical Example;426
29.6;References;427
30;25 Binary Decision Diagrams for Reliability Studies;429
30.1;25.1 Introduction;429
30.2;25.2 Fault Trees, Event Trees and Binary Decision Diagrams;430
30.3;25.3 Minimal Cutsets;432
30.4;25.4 Probabilistic Assessments;436
30.5;25.5 Assessment of Large Models;441
30.6;25.6 Conclusions;442
30.7;References;443
31;26 Field Data Analysis for Repairable Systems: Status and Industry Trends;445
31.1;26.1 Introduction;445
31.2;26.2 Dangers of MTBF;446
31.3;26.3 Parametric Methods;449
31.4;26.4 Mean Cumulative Functions;450
31.5;26.5 Calendar Time Analysis;453
31.6;26.6 Failure Cause Plots;455
31.7;26.7 MCF Comparisons;456
31.8;26.8 MCF Extensions;458
31.9;26.9 Conclusions;459
31.10;References;460
32;27 Reliability Degradation of Mechanical Components and Systems;461
32.1;27.1 Introduction;461
32.2;27.2 Reliability Degradation Under Randomly Repeated Loading;462
32.3;27.3 Residual Fatigue Life Distribution and Load Cycle- dependent Reliability Calculations;470
32.4;27.4 Conclusions;475
32.5;References;476
33;28 New Models and Measures for Reliability of Multi-state Systems;479
33.1;28.1 Introduction;479
33.2;28.2 Multi-state Reliability Models;480
33.3;28.3 Measures Based on the Cumulative Experience of the Customer;483
33.4;28.4 Applications of Multi-state Models;488
33.5;28.5 Conclusions;491
33.6;References;492
34;29 A Universal Generating Function in the Analysis of Multi-state Systems;495
34.1;29.1 Introduction;495
34.2;29.2 The RBD Method for MSS;496
34.3;29.3 Combination of Random Processes Methods and the UGF Technique;501
34.4;29.4 Combined Markov-UGF Technique for Analysis of Safety-critical Systems;506
34.5;29.5 Conclusions;510
35;30 New Approaches for Reliability Design in Multistate Systems;513
35.1;30.1 Introduction;513
36;31 New Approaches to System Analysis and Design: A Review;525
36.1;31.1 Introduction;525
36.2;31.2 General Topics of Applications of Possibility Theory and Evidence Theory;528
36.3;31.3 Theoretical Development in the Area of Reliability;529
36.4;31.4 Computational Developments in the Reliability Area;532
36.5;31.5 Performability Improvement on the Use of Possibility Theory and Evidence Theory;537
36.6;31.6 Developing Trends of Possibility and Evidence- based Methods;542
36.7;31.7 Conclusions;542
36.8;References;543
37;32 Optimal Reliability Design of a System;547
37.1;32.1 Introduction;547
37.2;32.2 Problem Description;549
37.3;32.3 Problem Formulation;551
37.4;32.4 Solution Techniques;554
37.5;32.5 Optimal Design for Repairable Systems;561
37.6;32.6 Conclusion;562
37.7;References;563
38;33 MIP: A Versatile Tool for Reliability Design of a System;569
38.1;33.1 Introduction;569
38.2;33.2 Redundancy Allocation Problem;570
38.3;33.3 Algorithmic Steps to Solve Redundancy Allocation Problem;572
38.4;33.4 Applications of MIP to Various System Design Problems;573
38.5;33.5 Conclusions;579
38.6;References;579
39;34 Reliability Demonstration in Product Validation Testing;581
39.1;34.1 Introduction;581
39.2;34.2 Engineering Specifications Associated with Product Reliability Demonstration;581
39.3;34.3 Reliability Demonstration Techniques;583
39.4;34.4 Reducing the Cost of Reliability Demonstration;586
39.5;34.5 Assumptions and Complexities of Reliability Demonstration;589
39.6;34.6 Conclusions;590
39.7;References;590
40;35 Quantitative Accelerated Life-testing and Data Analysis;591
40.1;35.1 Introduction;591
40.2;35.2 Types of Accelerated Tests;591
40.3;35.3 Understanding Accelerated Life Test Analysis;593
40.4;35.4 Life Distribution and Life-stress Models;594
40.5;35.5 Parameter Estimation;596
40.6;35.6 Stress Loading;596
40.7;35.7 An Introduction to the Arrhenius Relationship;597
40.8;35.8 An Introduction to Two-stress Models;601
40.9;35.9 Advanced Concepts;603
40.10;References;605
41;36 HALT and HASS Overview: The New Quality and Reliability Paradigm;607
41.1;36.1 Introduction;607
41.2;36.2 The Two Forms of HALT Currently in Use;608
41.3;36.3 Why Perform HALT and HASS?;611
41.4;36.4 A Historical Review of Screening;614
41.5;36.5 The Phenomenon Involved and Why Things Fail;616
41.6;36.6 Equipment Required;618
41.7;36.7 The Bathtub Curve;619
41.8;36.8 Examples of Successes from HALT;620
41.9;36.9 Some General Comments on HALT and HASS;622
41.10;36.10 Conclusions;624
41.11;References;625
42;37 Modeling Count Data in Risk Analysis and Reliability Engineering;627
42.1;37.1 Introduction;627
42.2;37.2 Classical Regression Models for Count Data;628
42.3;37.3 Bayesian Models for Count Data;634
42.4;37.4 Conclusions;640
42.5;References;640
43;38 Fault Tree Analysis;643
43.1;38.1 Introduction;643
43.2;38.2 A Comparison with Other Methods;644
43.3;38.3 Fault Tree Construction;645
43.4;38.4 Different Forms;646
43.5;38.5 Types of Fault Trees Analysis;649
43.6;38.6 Static FTA Techniques;650
43.7;38.7 Dynamic FTA Techniques;655
43.8;38.8 Noncoherent FTA Techniques;656
43.9;38.9 Advanced Topics;659
43.10;38.10 FTA Software Tools;665
43.11;References;665
44;39 Common Cause Failure Modeling: Status and Trends;669
44.1;39.1 Introduction;669
44.2;39.2 Causes of CCF;671
44.3;39.3 Data Collection and Analysis;682
44.4;39.4 Concluding Remarks and Ideas for Further Research;685
44.5;References;686
45;40 A Methodology for Promoting Reliable Human–System Interaction;689
45.1;40.1 Introduction;689
45.2;40.2 Methodology;692
45.3;40.3 Summary;700
45.4;References;713
46;41 Risk Analysis and Management: An Introduction;715
46.1;41.1 Introduction;715
46.2;41.2 Quantitative Risk Assessment;720
46.3;41.3 Probabilistic Risk Assessment;724
46.4;41.4 Risk Management;725
46.5;41.5 Risk Governance;726
46.6;References;726
47;42 Accident Analysis of Complex Systems Based on System Control for Safety;731
47.1;42.1 Introduction;731
47.2;42.2 Accident Cause Analysis Based on Safety Control;732
47.3;42.3 Accident Occurrence Condition Based on Control Functions for Safety;737
47.4;42.4 Conclusions;744
47.5;References;744
48;43 Probabilistic Risk Assessment;747
48.1;43.1 Introduction;747
48.2;43.2 Steps in Conducting a Probabilistic Risk Assessment;748
48.3;43.3 Compressed Natural Gas (CNG) Powered Buses: A PRA Case Study;758
48.4;References;765
49;44 Risk Management;767
49.1;44.1 Introduction;767
49.2;44.2 Risk Management Principles;774
49.3;44.3 Recommendations;784
49.4;References;788
50;45 Risk Governance: An Application of Analytic-deliberative Policy Making;791
50.1;45.1 Introduction;791
50.2;45.2 Main Features of the IRGC Framework;791
50.3;45.3 The Core of the Framework: Risk Governance Phases;793
50.4;45.4 Stakeholder Involvement and Participation;797
50.5;45.5 Wider Governance Issues: Organizational Capacity and Regulatory Styles;798
50.6;45.6 Conclusions;801
50.7;Reference;802
51;46 Maintenance Engineering and Maintainability: An Introduction;803
51.1;46.1 Introduction;803
51.2;46.2 Approaches to Maintenance;807
51.3;46.3 Reliability Centered Maintenance;816
51.4;46.4 Total Productive Maintenance;817
51.5;46.5 Computerized Maintenance Management System;819
51.6;References;820
52;47 System Maintenance: Trends in Management and Technology;821
52.1;47.1 Introduction;821
52.2;47.2 Why Does a Component or a System Fail and What Is the Role of Maintenance?;822
52.3;47.3 Trends in Management of the Maintenance Process;823
52.4;47.4 TPM Implementation;823
52.5;47.5 Application of Risk-based Decision Making in Maintenance;824
52.6;47.6 Outsourcing of Maintenance and Purchasing of the Required Functions;825
52.7;47.7 Trends in Maintenance Technology and Engineering;829
52.8;47.8 Condition Monitoring and Condition- based Maintenance Strategy;831
52.9;47.9 ICT Application in Maintenance: e- Maintenance 24- 7;832
52.10;47.10 Conclusions;834
52.11;References;834
53;48 Maintenance Models and Optimization;837
53.1;48.1 Introduction;837
53.2;48.2 Previous Contributions;839
53.3;48.3 Maintenance Models;841
53.4;48.4 Maintenance Policies;844
53.5;48.5 Maintenance Optimization and Techniques;847
53.6;48.6 Maintenance Miscellanea;848
53.7;48.7 Future Developments;850
53.8;References;851
54;49 Replacement and Preventive Maintenance Models;855
54.1;49.1 Introduction;855
54.2;49.2 Replacement Models;856
54.3;49.3 Preventive Maintenance Models;863
54.4;49.4 Computer Systems;867
54.5;References;870
55;50 Effective Fault Detection and CBM Based on Oil Data Modeling and DPCA;873
55.1;50.1 Introduction;873
55.2;50.2 Fault Detection Using MSPC, VAR Modeling and DPCA;875
55.3;50.3 CBM Cost Modeling and Failure Prevention;882
55.4;50.4 Conclusions;888
55.5;References;888
56;51 Sustainability: Motivation and Pathways for Implementation;891
56.1;51.1 Introduction;891
56.2;51.2 Environmental Risk Assessment;892
56.3;51.3 Ecological Risk Assessment;893
56.4;51.4 Sustainability;894
56.5;51.5 Pathways to Sustainability;900
56.6;51.6 Sustainable Future Technologies;901
56.7;References;903
57;52 Corporate Sustainability: Some Challenges for Implementing and Teaching Organizational Risk Management in a Performability Context;905
57.1;52.1 Introduction;905
57.2;52.2 Pressure for Change;905
57.3;52.3 Internal Control;909
57.4;52.4 Risk Assessment and Management;910
57.5;52.5 Stakeholder Involvement;912
57.6;52.6 Meeting Some Educational Challenges;919
57.7;52.7 Conclusion;922
57.8;References;922
58;53 Towards Sustainable Operations Management Integrating Sustainability Management into Operations Management Strategies and Practices;923
58.1;53.1 Introduction;923
58.2;53.2 Sustainability;924
58.3;53.3 Operations as a System to Deliver Stakeholder Value;927
58.4;53.4 Integration of Operations and Sustainability Management;931
58.5;53.5 Implications for Operations Management;946
58.6;53.6 Conclusions;947
58.7;References;948
59;54 Indicators for Assessing Sustainability Performance;953
59.1;54.1 Introduction;953
59.2;54.2 Non-composite Indicators for Sustainability;955
59.3;54.3 Composite Indicators for Sustainability;955
59.4;54.4 Recent Methodological Developments in Constructing CSIs;957
59.5;54.5 An Illustrative Example;962
59.6;54.6 Conclusion;964
59.7;References;964
60;55 Sustainable Technology;967
60.1;55.1 Introduction;967
60.2;55.2 What Is Technology for?;968
60.3;55.3 The Linear Production System;969
60.4;55.4 Is Globalization a Solution?;969
60.5;55.5 Technology Lock-in;970
60.6;55.6 From Techno-centric Concerns to Socio- centric Concerns;971
60.7;55.7 Technology and Culture;973
60.8;55.8 Technology and Risk;974
60.9;55.9 Innovation and Funding of R&D;975
60.10;55.10 Engineering Education for Sustainable Development;976
60.11;55.11 Industrial Ecology – The Science of Sustainability;978
60.12;55.12 Conclusions;979
60.13;References;979
61;56 Biotechnology: Molecular Design in a Globalizing World;981
61.1;56.1 Introduction;981
61.2;56.2 What is Biotechnology?;981
61.3;56.3 The Importance of ( Bio) Molecular Sciences;982
61.4;56.4 Application of Biotechnology in Different Sectors of the Economy;983
61.5;56.5 Biotechnology and Sustainable Development;985
61.6;56.6 Innovations, Civil Society, and Global Space;987
61.7;56.7 Biotechnology, Agriculture, and Regulations;988
61.8;56.8 Conclusions;989
61.9;References;989
62;57 Nanotechnology: A New Technological Revolution in the 21st Century;991
62.1;57.1 Introduction;991
62.2;57.2 Top-down and Bottom-up Design;993
62.3;57.3 Applications of Nanotechnology;994
62.4;57.4 Applications in the Energy Sector;994
62.5;57.5 Environmental Applications;995
62.6;57.6 Other Areas of Applications;996
62.7;57.7 Market Prospects;997
62.8;57.8 Nanotechnology for Sustainability;998
62.9;57.9 Risks to the Environment and Human Health;999
62.10;57.10 Conclusions References;1000
63;58 An Overview of Reliability and Failure Mode Analysis of Microelectromechanical Systems ( MEMS);1001
63.1;58.1 Introduction;1001
63.2;58.2 MEMS and Reliability;1001
63.3;58.3 MEMS Failures Mode and Mechanism Analysis;1002
63.4;58.4 Conclusions;1010
63.5;References;1010
64;59 Amorphous Hydrogenated Carbon Nanofilm;1015
64.1;59.1 Introduction;1015
64.2;59.2 Deposition Methods;1016
64.3;59.3 Deposition Mechanism of a-C:H;1018
64.4;59.4 Bulk Properties of a-C:H;1019
64.5;59.5 Electronic Applications;1020
64.6;59.6 Mechanical and Other Properties;1021
64.7;References;1027
65;60 Applications of Performability Engineering Concepts;1033
65.1;60.1 Introduction 60.2 Areas of Application;1033
65.2;References;1042
66;61 Reliability in the Medical Device Industry;1045
66.1;61.1 Introduction;1045
66.2;61.2 Government (FDA) Control;1047
66.3;61.3 Medical Device Classification;1047
66.4;61.4 Reliability Programs;1048
66.5;61.5 Reliability Testing;1053
66.6;61.6 MTBF Calculation Methods in Reliability Testing;1054
66.7;61.7 Reliability Related Standards and Good Practices for Medical Devices;1055
66.8;References;1057
67;62 A Tasks-based Six Sigma Roadmap for Healthcare Services;1059
67.1;62.1 Introduction;1059
67.2;62.2 Task Oriented Strategies of Six Sigma;1060
67.3;62.3 Six Sigma Roadmap for Healthcare;1062
67.4;62.4 Case Study of the Dispensing Process in a Pharmacy;1067
67.5;62.5 Conclusions;1070
67.6;References;1071
68;63 Status and Recent Trends in Reliability for Civil Engineering Problems;1073
68.1;63.1 Introduction;1073
68.2;63.2 The Need for Reliability-based Design in Civil Engineering;1074
68.3;63.3 Changes in Design Philosophies – Design Requirements;1074
68.4;63.4 Available Analytical Methods – FORM/ SORM, Simulation;1075
68.5;C;1080
68.6;63.5 Probabilistic Sensitivity Indexes;1083
68.7;63.6 Reliability Evaluation Using Simulation;1084
68.8;63.7 Reliability Evaluation Using FOSM, FORM, and Simulation;1085
68.9;63.8 FORM for Implicit Limit State Functions – The Stochastic Finite Element Method;1087
68.10;63.9 Recent Trends in Reliability for Civil Engineering Problems;1088
68.11;63.10 Concluding Remarks;1092
68.12;References;1092
69;64 Performability Issues in Wireless Communication Networks;1095
69.1;64.1 Introduction;1095
69.2;64.2 System Models;1096
69.3;64.3 Performability Analysis and Improvement of WCN;1100
69.4;64.4 Conclusions;1113
69.5;References;1113
70;65 Performability Modeling and Analysis of Grid Computing;1117
70.1;65.1 Introduction;1117
70.2;65.2 Grid Service Reliability and Performance;1118
70.3;65.3 Star Topology Grid Architecture;1123
70.4;65.4 Tree Topology Grid Architecture;1127
70.5;65.5 Conclusions;1133
70.6;References;1133
71;66 Status and Trends in the Performance Assessment of Fault Tolerant Systems;1135
71.1;66.1 Introduction;1135
71.2;66.2 Hardware Fault Tolerant Architectures and Techniques;1136
71.3;66.3 Software FT: Learning from Hardware;1139
71.4;66.4 Global Fault Tolerance Issues;1142
71.5;66.5 Performance Evaluation: A RAM Case Study;1149
71.6;66.6 Conclusions and Future Trends;1151
71.7;References;1153
72;67 Prognostics and Health Monitoring of Electronics;1155
72.1;67.1 Introduction;1155
72.2;67.2 Reliability and Prognostics;1156
72.3;67.3 PHM for Electronics;1156
72.4;67.4 PHM Concepts and Methods;1157
72.5;67.5 Implementation of PHM in a System;1165
72.6;67.6 Health Monitoring for Product Take- back and End- of- life Decisions;1166
72.7;67.7 Conclusions;1168
72.8;References;1168
73;68 RAMS Management of Railway Tracks;1171
73.1;68.1 Introduction;1171
73.2;68.2 Railway Tracks;1171
73.3;68.3 Degradation Modeling;1175
73.4;68.4 Methods for Optimizing Maintenance and Renewal;1179
73.5;68.5 Case Studies on RAMS;1182
73.6;68.6 Conclusions and Future Challenges;1191
73.7;References;1191
74;69 Cost–Benefit Optimization Including Maintenance for Structures by a Renewal Model;1195
74.1;69.1 Introduction;1195
74.2;69.2 Preliminaries;1196
74.3;69.3 Cost–Benefit Optimization;1200
74.4;69.4 Preventive Maintenance;1202
74.5;69.5 Example;1206
74.6;69.6 Summary;1208
74.7;References;1208
75;70 Reliability and Price Assessment and the Associated Risk Control for Restructured Power Systems;1211
75.1;70.1 Introduction;1211
75.2;70.2 Reliability and Price Assessment of Restructured Power Systems with the Poolco Market Model;1215
75.3;70.3 Reliability and Price Assessment of Restructured Power Systems with the Hybrid Market Model;1218
75.4;70.4 A Schema for Controlling Price Volatilities Based on Price Decomposition Techniques;1222
75.5;References;1226
76;71 Probabilistic Risk Assessment for Nuclear Power Plants;1227
76.1;71.1 Introduction;1227
76.2;71.2 Essential Elements of PRA;1229
76.3;71.3 Today’s Challenges;1235
76.4;71.4 Outlook;1237
76.5;References;1238
77;72 Software Reliability and Fault-tolerant Systems: An Overview and Perspectives;1241
77.1;72.1 Introduction;1241
77.2;72.2 The Software Development Process;1243
77.3;72.3 Software Reliability Modeling;1244
77.4;72.4 Generalized Models with Environmental Factors;1247
77.5;72.5 Fault-tolerant Software Systems;1249
77.6;72.6 Cost Modeling;1252
77.7;References;1254
78;73 Application of the Lognormal Distribution to Software Reliability Engineering;1257
78.1;73.1 Introduction;1257
78.2;73.2 Overview of the Lognormal;1258
78.3;73.3 Why Are Software Event Rates Lognormal?;1258
78.4;73.4 Lognormal Hypotheses;1261
78.5;73.5 Empirical Validation;1264
78.6;73.6 Future Research Directions;1269
78.7;73.7 Conclusions;1271
78.8;References;1271
79;74 Early-stage Software Product Quality Prediction Based on Process Measurement Data;1275
79.1;74.1 Introduction;1275
79.2;74.2 Quality Prediction Based on Quality Assurance Factors;1276
79.3;74.3. Quality Prediction Based on Management Factors;1279
79.4;74.4. Relationship Between Product Quality and Development Cost;1283
79.5;74.5 Discriminant Analysis 74.6 Conclusion;1284
79.6;References;1285
80;75 On the Development of Discrete Software Reliability Growth Models;1287
80.1;75.1 Introduction;1287
80.2;75.2 Discrete Software Reliability Growth Models;1289
80.3;,;1290
80.4;(;1299
80.5;(;1301
80.6;(;1301
80.7;75.3 Conclusion;1301
80.8;References;1302
81;76 Epilogue;1305
81.1;76.1 Mere Dependability Is Not Enough;1305
81.2;76.2 Sustainability: A Measure to Save the World from Further Deprivation;1306
81.3;76.3 Design for Performability: A Long- term Measure;1307
81.4;76.4 Parallelism Between Biotechnology and Nanotechnology;1313
81.5;76.5 A Peep into the Future;1315
81.6;References;1316
82;About the Editor;1319
83;About the Contributors;1321
84;Index;1343




