Morozov / Nashed | Methods for Solving Incorrectly Posed Problems | Buch | 978-0-387-96059-3 | www.sack.de

Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Morozov / Nashed

Methods for Solving Incorrectly Posed Problems


1. Auflage 1984
ISBN: 978-0-387-96059-3
Verlag: Springer

Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

ISBN: 978-0-387-96059-3
Verlag: Springer


Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f € F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D, in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ("sol vabi li ty" condition); (2) The equality AU = AU for any u ,u € DA implies the I 2 l 2 equality u = u ("uniqueness" condition); l 2 (3) The inverse operator A-I is continuous on F ("stability" condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any "ill-posed" (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.

Morozov / Nashed Methods for Solving Incorrectly Posed Problems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. The Regularization Method.- Section 1. The Basic Problem for Linear Operators.- Section 2. The Approximation of the Solution of the Basic Problem.- Section 3. The Euler Variation Inequality. Estimation of Accuracy.- Section 4. Stability of Regularized Solutions.- Section 5. Approximation of the Admissible Set. Choice of the Basis.- 2. Criteria for Selection of Regularization Parameter.- Section 6. Some Properties of Regularized Solutions.- Section 7. Methods for Choosing the Parameter: Case of Exact Information.- Section 8. The Residual Method and the Method of Quasi-solutions: Case of Exact Information.- Section 9. Properties of the Auxiliary Functions.- Section 10. Criteria for the Choice of a Parameter: Case of Inexact Data.- 3. Regular Methods for Solving Linear and Nonlinear Ill-Posed Problems.- Section 11. Regularity of Approximation Methods.- Section 12. The Theory of Accuracy of Regular Methods.- Section 13. The Computation of the Estimation Function.- Section 14. Examples of Regular Methods.- Section 15. The Principle of Residual Optimality for Approximate Solutions of Equations with Nonlinear Operators.- Section 16. The Regularization Method for Nonlinear Equations.- 4. The Problem of Computation and the General Theory of Splines.- Section 17. The Problem of Computation and the Parameter Identification Problem.- Section 18. Properties of Smoothing Families of Operators.- Section 19. The Optimality of Smoothing Algorithms.- Section 20. The Differentiation Problem and Algorithms of Approximation of the Experimental Data.- Section 21.The Theory of Splines and the Problem of Stable Computation of Values of an Unbounded Operator.- Section 22. Approximate Solution of Operator Equations Using Splines.- Section 23. Recovering the Solution of the Basic Problem FromApproximate Values of the Functiona1s.- 5. Regular Methods for Special Cases of the Basic Problem. Algorithms for Choosing the Regularization Parameter.- Section 24. Pseudosolutions.- Section 25. Optimal Regularization.- Section 26. Numerical Algorithms for Regularization Parameters.- Section 27. Heuristic Methods for Choosing a Parameter.- Section 28. The Investigation of Adequacy of Mathematical Models.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.