Buch, Englisch, 341 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1100 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 341 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1100 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4718-6
Verlag: Birkhäuser
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Topologie Analytische Topologie
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
Weitere Infos & Material
Fundamental Concepts of Knot Theory.- Knot Tables.- Fundamental Problems of Knot Theory.- Classical Knot Invariants.- Seifert Matrices.- Invariants from the Seifert Matrix.- Torus Knots.- Creating Manifolds from Knots.- Tangles and 2-Bridge Knots.- The Theory of Braids.- The Jones Revolution.- Knots via Statistical Mechanics.- Knot Theory in Molecular Biology.- Graph Theory Applied to Chemistry.- Vassiliev Invariants.




