E-Book, Englisch, 886 Seiten
Mutis / Hartmann Advances in Informatics and Computing in Civil and Construction Engineering
1. Auflage 2018
ISBN: 978-3-030-00220-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management
E-Book, Englisch, 886 Seiten
ISBN: 978-3-030-00220-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This proceedings volume chronicles the papers presented at the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management, held in Chicago, IL, USA, in October 2018. The theme of the conference focused on fostering, encouraging, and promoting research and development in the application of integrated information technology (IT) throughout the life-cycle of the design, construction, and occupancy of buildings and related facilities. The CIB - International Council for Research and Innovation in Building Construction - was established in 1953 as an association whose objectives were to stimulate and facilitate international cooperation and information exchange between governmental research institutes in the building and construction sector, with an emphasis on those institutes engaged in technical fields of research. The conference brought together more than 200 scholars from 40 countries, who presented the innovative concepts and methods featured in this collection of papers.
Dr. Ivan Mutis is an Assistant Professor, Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL. Throughout his active research career, Dr. Mutis has worked at the nexus of new technologies, cognition, and construction, pioneering the integration of intelligent systems into civil and architectural engineering applications. His studies have been recognized as innovative, transformative and of national significance by agencies including National Science Foundation. Professor Mutis received his Ph.D. from the University of Florida. Dr. Timo Hartmann is Professor for Systems Engineering at the TU Berlin. In his research and practical work, he develops state of the art system visualization and simulation technologies and integrates these technologies with the working processes of construction, engineering, and architectural professionals. Professor Hartmann received his Ph.D. from Stanford University where he was a student at the Center for Integrated Facility Management. He is also deputy editor of Construction, Engineering, and Architectural Management and Advanced Engineering Informatics.
Autoren/Hrsg.
Weitere Infos & Material
1;Letter from the Editors;5
2;About CIB and CIB W78;6
3;Introduction;15
4;Contents;7
4.1;Par7;16
4.2;Sec2;16
5;Information Integration and Informatics;17
6;1 Barriers of Automated BIM Use: Examining Factors of Project Delivery;18
6.1;Abstract;18
6.2;1.1 Introduction;18
6.3;1.2 Phase 1: Reliability Model;19
6.3.1;1.2.1 Findings from Phase 1;19
6.4;1.3 Phase 2: Project Delivery and Trust;19
6.4.1;1.3.1 Research Design;20
6.4.2;1.3.2 Identifying Project Delivery Variables that Impact BIM Use;20
6.4.3;1.3.3 Survey 1;20
6.4.4;1.3.4 Survey 2;21
6.5;1.4 Findings and Observations;21
6.6;1.5 Conclusion;21
6.7;References;24
7;2 Simulation of Construction Processes as a Link Between BIM Models and Construction Progression On-site;25
7.1;Abstract;25
7.2;2.1 Introduction;25
7.3;2.2 Background;26
7.4;2.3 Methodology;27
7.5;2.4 Proposed Framework for Integration of 4D BIM Models and Sensor Data of Construction Activity Progress;27
7.6;2.5 Case Study: Masonry;27
7.6.1;2.5.1 Simulation on Excel Spreadsheets;29
7.6.2;2.5.2 ProModel Simulation;29
7.6.3;2.5.3 Results;30
7.7;2.6 Conclusions;31
7.8;Acknowledgements;31
7.9;References;31
8;3 In Search of Sustainable Design Patterns: Combining Data Mining and Semantic Data Modelling on Disparate Building Data;33
8.1;Abstract;33
8.2;3.1 Introduction;33
8.3;3.2 Data Analytics and Knowledge Discovery in the AEC Industry;34
8.4;3.3 BIM and Semantic Representations of Building Data;35
8.5;3.4 Combining Semantics and KDD to Enhance High-performance Design: Proposed System Architecture;35
8.6;3.5 Use Case: Gigantium Cultural and Sports Center;36
8.6.1;3.5.1 Capturing the Building Semantics Using a Semantic Graph;37
8.6.2;3.5.2 Knowledge Discovery in Operational Building Data;37
8.7;3.6 Conclusion;38
8.8;Acknowledgements;39
8.9;References;39
9;4 The Role of Knowledge-Based Information on BIM for Built Heritage;41
9.1;Abstract;41
9.2;4.1 Introduction;41
9.3;4.2 State of Art;42
9.4;4.3 Overview of the Approach;42
9.5;4.4 Building the Knowledge-Based Information Model;43
9.5.1;4.4.1 Case Study: The Oscar Niemeyer’s Ballroom in the Pampulha Modern Ensemble;43
9.5.2;4.4.2 Non-geometric Data;44
9.5.3;4.4.3 Geometric Data;44
9.5.4;4.4.4 Modeling Through the Point Clouds;45
9.5.5;4.4.5 Knowledge-Based;46
9.6;4.5 Conclusions and Future Works;47
9.7;References;48
10;5 Heritage Building Information Modelling (HBIM): A Review of Published Case Studies;49
10.1;Abstract;49
10.2;5.1 Introduction: The Distinctive Nature of Heritage BIM;49
10.2.1;5.1.1 Perspectives on BIM;49
10.2.2;5.1.2 Understanding HBIM;50
10.3;5.2 Methodology: A Case Study Database;51
10.4;5.3 Analysis and Discussion;52
10.4.1;5.3.1 Introduction;52
10.4.2;5.3.2 Trends in the Uptake of HBIM;52
10.4.3;5.3.3 The Stated Purpose of HBIM Systems;53
10.4.4;5.3.4 Stakeholder Involvement and Responses;54
10.5;5.4 Conclusions;55
10.6;References;55
11;6 Next Generation of Transportation Infrastructure Management: Fusion of Intelligent Transportation Systems (ITS) and Bridge Information Modeling (BrIM);56
11.1;Abstract;56
11.2;6.1 Introduction;56
11.3;6.2 Methodology;57
11.4;6.3 Overview of the Current Infrastructure;58
11.5;6.4 Intelligent Transportation Systems (ITS);59
11.5.1;6.4.1 Components of ITS;59
11.6;6.5 ITS-BrIM Fusion Data Framework;60
11.7;6.6 Conclusion;61
11.8;References;62
12;7 Blockchain in the Construction Sector: A Socio-technical Systems Framework for the Construction Industry;64
12.1;Abstract;64
12.2;7.1 Introduction;64
12.3;7.2 Distributed Ledger Technology (DLT): Key Concepts;65
12.4;7.3 Emergent Framework;65
12.5;7.4 Methodology;67
12.5.1;7.4.1 Socio-Technical Systems;67
12.5.2;7.4.2 Systematic Literature Review;68
12.5.3;7.4.3 Focus Group Discussion;68
12.6;7.5 Conclusions;68
12.7;References;69
13;8 Formalized Knowledge Representation to Support Integrated Planning of Highway Projects;71
13.1;Abstract;71
13.2;8.1 Introduction;71
13.3;8.2 Background;72
13.3.1;8.2.1 AEC/FM;72
13.3.2;8.2.2 Transportation Infrastructure Management;72
13.3.3;8.2.3 Research Gap;73
13.4;8.3 Research Objective and Approach;73
13.5;8.4 Proposed Ontology;74
13.5.1;8.4.1 Highway Project;74
13.5.2;8.4.2 Conflict Detection Process;75
13.5.3;8.4.3 Inter-project Conflict;76
13.6;8.5 Implementation and Validation;76
13.6.1;8.5.1 Logical Consistency (Ontology Verification);77
13.6.2;8.5.2 Competency Evaluation;77
13.7;8.6 Conclusion;78
13.8;References;78
14;9 An Automated Layer Classification Method for Converting CAD Drawings to 3D BIM Models;79
14.1;Abstract;79
14.2;9.1 Introduction;79
14.3;9.2 Methodology;80
14.4;9.3 Literature Review;80
14.4.1;9.3.1 Architecture Drawing Standard;80
14.4.2;9.3.2 Current Work on 3D Model Converting;80
14.5;9.4 Automatic Layer Classification Method;81
14.5.1;9.4.1 Layer Property in Construction Structural Drawings;81
14.5.2;9.4.2 Overview of Automated Layer Classification Method;82
14.5.3;9.4.3 Detailed Method to Classify Typical Layers;83
14.5.3.1;9.4.3.1 Axis Text Layer;84
14.5.3.2;9.4.3.2 Dimension Layer;84
14.5.3.3;9.4.3.3 Window and Door Layer;85
14.5.3.4;9.4.3.4 Wall Layer;86
14.6;9.5 Performance Evaluation;86
14.7;9.6 Value of Automated Layer Classification;87
14.8;9.7 Conclusion;87
14.9;References;88
15;10 Defining Levels of Development for 4D Simulation of Major Capital Construction Projects;89
15.1;Abstract;89
15.2;10.1 Introduction;89
15.3;10.2 Related Work;90
15.4;10.3 Methodology;90
15.5;10.4 Case Studies;92
15.6;10.5 Summary and Conclusions;95
15.7;References;95
16;11 Modularized BIM Data Validation Framework Integrating Visual Programming Language with LegalRuleML;96
16.1;Abstract;96
16.2;11.1 Introduction;96
16.3;11.2 Literature Review;97
16.3.1;11.2.1 Formal Representation and Semantic Interoperability Using RuleML and LegalRuleML;98
16.3.2;11.2.2 Graphical Scripting or Visual Programming Language in Rule Checking;98
16.4;11.3 Methodology;99
16.5;11.4 LegalRuleML and Visual Programming-Based Rule-Checking System;100
16.5.1;11.4.1 The Human-Readable Layer and Machine-Computable Layer;100
16.5.2;11.4.2 The Rule-Checking Layer;100
16.6;11.5 Rule Classification and Parametrization;100
16.6.1;11.5.1 Rules and LegalRuleML;100
16.6.2;11.5.2 Rule Mapping in LegalRuleML;101
16.7;11.6 Example Case Study;101
16.8;11.7 Discussion and Conclusion;103
16.9;References;104
17;12 Coupling Between a Building Spatial Design Optimisation Toolbox and BouwConnect BIM;105
17.1;Abstract;105
17.2;12.1 Introduction;105
17.2.1;12.1.1 Building Design Optimisation;106
17.2.2;12.1.2 Optimisation and BIM;106
17.2.3;12.1.3 Motivation;106
17.3;12.2 Framework;106
17.3.1;12.2.1 Optimisation Toolbox;107
17.3.2;12.2.2 The BouwConnect BIM Environment;107
17.3.3;12.2.3 Coupling;108
17.4;12.3 Case Study;108
17.4.1;12.3.1 Design Process;108
17.4.2;12.3.2 Discussion;111
17.5;12.4 Conclusion and Outlook;111
17.6;Acknowledgements;111
17.7;References;112
18;13 Reusability and Its Limitations of the Modules of Existing BIM Data Exchange Requirements for New MVDs;113
18.1;Abstract;113
18.2;13.1 Introduction;113
18.3;13.2 Background;114
18.4;13.3 Methodology;114
18.4.1;13.3.1 A Modularized Concept;114
18.4.2;13.3.2 A Concept in the IfcDoc Application;115
18.4.3;13.3.3 Problems in Reusability of Concepts and MVDs for New MVD;118
18.5;13.4 Conclusion;119
18.6;References;120
19;14 Employment of Semantic Web Technologies for Capturing Comprehensive Parametric Building Models;121
19.1;Abstract;121
19.2;14.1 Introduction;122
19.3;14.2 Related Work;124
19.4;14.3 Parametric Modelling Using Semantic Web Technologies;124
19.4.1;14.3.1 Challenges and Limitations;124
19.4.2;14.3.2 RDF as a Semantic Web Standard and Technology;125
19.4.3;14.3.3 Data Aggregation and Processing;125
19.4.4;14.3.4 Data Standardization and BIM Capture;126
19.5;14.4 Conclusions;131
19.6;Acknowledgements;131
19.7;References;131
20;15 BIM Coordination Oriented to Facility Management;133
20.1;Abstract;133
20.2;15.1 Introduction;133
20.3;15.2 The State of the Art of BIM Project Coordination and Facility Management;134
20.4;15.3 The Relationships in the Buildings Lifecycle;135
20.5;15.4 The Inclusion of FM During the Project’s Life Cycle;135
20.6;15.5 The FM Coordination Matrix;136
20.7;15.6 Results;137
20.8;15.7 Conclusions and Further Research;137
20.9;Acknowledgements;138
20.10;References;138
21;16 OpenBIM Based IVE Ontology: An Ontological Approach to Improve Interoperability for Virtual Reality Applications;139
21.1;Abstract;139
21.2;16.1 Introduction;139
21.2.1;16.1.1 AECO in France, a Sector Highly Exposed to Occupational Accidents;139
21.2.2;16.1.2 Training, Essential Lever;139
21.2.3;16.1.3 Goal;140
21.3;16.2 Related Works;140
21.3.1;16.2.1 Generate the Virtual World;140
21.4;16.3 Proposed Solution and Results;141
21.4.1;16.3.1 Interoperability of IFC into a Virtual Environment;141
21.4.2;16.3.2 The Creation of Ontologies;141
21.4.3;16.3.3 OpenBIM Based IVE Ontology—Model Used;142
21.4.4;16.3.4 OpenBIM Based IVE Ontology—Generation and Evaluation;143
21.4.5;16.3.5 OpenBIM Based IVE Ontology—Presentation;143
21.4.6;16.3.6 OpenBIM Based IVE Ontology—Broadcasting;144
21.4.7;16.3.7 Design of the Application;144
21.5;16.4 Conclusion and Future Works;145
21.6;References;145
22;17 BIM and Through-Life Information Management: A Systems Engineering Perspective;147
22.1;Abstract;147
22.2;17.1 Introduction;147
22.3;17.2 Background;148
22.4;17.3 Systems Engineering Management Activities and Enablers;149
22.4.1;17.3.1 Systems Engineering Management Activities;149
22.5;17.4 Systems Engineering Management Enablers;152
22.6;17.5 Discussion;154
22.7;17.6 Conclusion;155
22.8;References;155
23;18 A Lean Design Management Process Based on Planning the Level of Detail in BIM-Based Design;157
23.1;Abstract;157
23.2;18.1 Introduction;157
23.3;18.2 Background;158
23.3.1;18.2.1 Lean Design Management;158
23.3.2;18.2.2 Level of Detail in BIM-Based Design;158
23.4;18.3 Method;159
23.5;18.4 Current Design Management Processes and Challenges in Finland;159
23.6;18.5 LDM Overall Process;159
23.7;18.6 Conclusion;161
23.8;References;162
24;Cyber-Human-Systems;163
25;19 The BIMbot: A Cognitive Assistant in the BIM Room;164
25.1;Abstract;164
25.2;19.1 Introduction;164
25.3;19.2 Related Work;166
25.4;19.3 Methodology;166
25.4.1;19.3.1 Pre-design Phase;166
25.4.1.1;19.3.1.1 Conflicts/Interferences at the Pre-design Phase;167
25.4.2;19.3.2 Cognitive Agent—BIMBot’s Architecture;167
25.4.2.1;19.3.2.1 Corpus;167
25.4.2.2;19.3.2.2 Neural Machine Translation - Generative Model;168
25.4.2.3;19.3.2.3 Rules-Based Model;170
25.4.2.4;19.3.2.4 Natural Language Processing(NLP) Engine;170
25.5;19.4 Implementation and Experimentation;170
25.5.1;19.4.1 Training;170
25.5.2;19.4.2 Inferences (Results);171
25.6;19.5 Conclusion and Future Work;172
25.7;References;172
26;20 Perceived Productivity Effects of Mobile ICT in Construction Projects;173
26.1;Abstract;173
26.2;20.1 Introduction;173
26.3;20.2 Literature Review;174
26.4;20.3 Research Methodology;174
26.5;20.4 Results and Discussions;176
26.5.1;20.4.1 Improved Communication and Information Flow;176
26.5.2;20.4.2 Better Project Execution;177
26.5.3;20.4.3 Improved Access to Data;177
26.5.4;20.4.4 Proper Defect Management;177
26.6;20.5 Conclusion;178
26.7;Acknowledgements;179
26.8;References;179
27;21 Mobile EEG-Based Workers’ Stress Recognition by Applying Deep Neural Network;181
27.1;Abstract;181
27.2;21.1 Introduction;181
27.3;21.2 EEG-Based Stress Recognition by Applying Deep Learning;182
27.3.1;21.2.1 EEG Signal Pre-processing: Artifacts Removal;183
27.3.2;21.2.2 Fully Connected Deep Neural Network;183
27.3.3;21.2.3 Deep Convolutional Neural Network;183
27.4;21.3 Experimental Setting;184
27.5;21.4 Results and Findings;185
27.6;21.5 Conclusion;187
27.7;Acknowledgements;187
27.8;References;187
28;22 Feasibility of Wearable Electromyography (EMG) to Assess Construction Workers’ Muscle Fatigue;189
28.1;Abstract;189
28.2;22.1 Introduction;189
28.3;22.2 Surface EMG to Measure Workers’ Muscle Fatigue;190
28.3.1;22.2.1 Artifacts Removal;190
28.3.2;22.2.2 EMG-Based Metrics;191
28.4;22.3 Experimental Setting;192
28.5;22.4 Results and Findings;194
28.6;22.5 Conclusion;194
28.7;Acknowledgements;194
28.8;References;194
29;23 Tacit Knowledge: How Can We Capture It?;196
29.1;Abstract;196
29.2;23.1 Introduction;196
29.3;23.2 The Process of Knowledge Transfer;197
29.3.1;23.2.1 Explicit Knowledge and Tacit Knowledge;197
29.3.2;23.2.2 Knowledge Transfer;198
29.3.3;23.2.3 The Construction Industry in Australia;198
29.3.4;23.2.4 How Tacit Knowledge Can Be Transferred;199
29.4;23.3 Research Method;200
29.5;23.4 Research Findings and Discussion;200
29.6;23.5 Conclusions;202
29.7;References;202
30;24 Inside the Collective Mind: Features Extraction to Support Automated Design Space Explorations;205
30.1;Abstract;205
30.2;24.1 Introduction;205
30.3;24.2 Human-Computer Interaction Through Natural Language;206
30.4;24.3 Research Method;207
30.5;24.4 Design Conversation Analysis: Results and Discussions;208
30.5.1;24.4.1 Quantitative Analysis;208
30.5.2;24.4.2 Qualitative Analysis;209
30.6;24.5 Conclusions;210
30.7;References;211
31;25 Detecting Falls-from-Height with Wearable Sensors and Reducing Consequences of Occupational Fall Accidents Leveraging IoT;212
31.1;Abstract;212
31.2;25.1 Introduction;212
31.3;25.2 Objective and Scope;213
31.4;25.3 Background Review;213
31.4.1;25.3.1 Technology;213
31.4.2;25.3.2 Safety Related Technology Based Studies in Construction;214
31.5;25.4 Detection of Occupational Falls;215
31.5.1;25.4.1 Proposed System;215
31.5.2;25.4.2 Implementation of the System;217
31.5.3;25.4.3 Test Results;217
31.6;25.5 Conclusions;218
31.7;References;219
32;26 Using Augmented Reality to Facilitate Construction Site Activities;220
32.1;Abstract;220
32.2;26.1 Introduction;220
32.3;26.2 Augmented Reality in Construction;221
32.4;26.3 Method;221
32.5;26.4 System Development;222
32.6;26.5 Conclusions;225
32.7;Acknowledgements;225
32.8;References;225
33;27 Semantic Frame-Based Information Extraction from Utility Regulatory Documents to Support Compliance Checking;227
33.1;Abstract;227
33.2;27.1 Introduction;227
33.3;27.2 Methodology;228
33.3.1;27.2.1 Semantic Framework and Semantic Frames;228
33.3.2;27.2.2 Preprocessing;229
33.3.3;27.2.3 Syntactic Analysis;230
33.3.4;27.2.4 Semantic Analysis;231
33.3.5;27.2.5 Information Element Mapping;233
33.4;27.3 Conclusion;233
33.5;References;234
34;28 Ontology-Based Semantic Retrieval Method of Energy Consumption Management;235
34.1;Abstract;235
34.2;28.1 Introduction;235
34.3;28.2 Existing Researches;236
34.4;28.3 An Integrated BIM System to Query Sensor Data Based on Ontological Knowledge;237
34.4.1;28.3.1 Building Energy Management Specific Ontology Development;238
34.4.2;28.3.2 The Integration of BIM and Monitoring Data;239
34.4.3;28.3.3 SWRL Generation for Energy Analysis;239
34.5;28.4 Energy Analysis Through Ontology Query;240
34.6;28.5 Conclusions;240
34.7;Acknowledgements;241
34.8;References;241
35;29 Visualisation of Risk Information in BIM to Support Risk Mitigation and Communication: Case Studies;243
35.1;Abstract;243
35.2;29.1 Introduction;243
35.3;29.2 Literature Review;244
35.3.1;29.2.1 BIM-Based Risk Management Research;244
35.3.2;29.2.2 Highlighting Risks in 3D BIM;244
35.3.3;29.2.3 Promoting Risk Visualisation in 4D BIM;245
35.4;29.3 Method and Case Studies;245
35.4.1;29.3.1 The Proposed Linkage Approach;245
35.4.2;29.3.2 Case Study 1: Managing Risks in 3D Highway BIM;245
35.4.3;29.3.3 Case Study 2: Visualising Risks in 4D Steel Bridge BIM;247
35.5;29.4 Discussion and Conclusion;248
35.6;Acknowledgements;248
35.7;References;249
36;30 Team Interactions in Digitally-Mediated Design Meetings;251
36.1;Abstract;251
36.2;30.1 Introduction;251
36.3;30.2 Background;252
36.3.1;30.2.1 Team Interaction;252
36.3.2;30.2.2 Mediated Team Interactions in AEC;253
36.4;30.3 Methodology;253
36.4.1;30.3.1 Research Design;253
36.4.2;30.3.2 Results;254
36.4.3;30.3.3 Conclusion;257
36.5;References;257
37;31 User Perceptions of and Needs for Smart Home Technology in South Africa;259
37.1;Abstract;259
37.2;31.1 Introduction;259
37.3;31.2 Background;260
37.3.1;31.2.1 Energy Consumption Monitoring;260
37.3.2;31.2.2 Energy Consumption Awareness;260
37.3.3;31.2.3 Energy Inefficiencies in Current Homes;261
37.3.4;31.2.4 Knowledge as a Barrier for Better Home Management Through Technology;261
37.3.5;31.2.5 Energy Savings from Smart Home Technology;262
37.3.6;31.2.6 Privacy and Security Concerns Relating to Smart Homes;262
37.4;31.3 Methodology;262
37.5;31.4 Findings;262
37.6;31.5 Conclusions and Recommendations;265
37.6.1;31.5.1 Conclusions;265
37.6.2;31.5.2 Recommendations;265
37.7;References;266
38;32 Seamless Integration of Multi-touch Table and Immersive VR for Collaborative Design;267
38.1;Abstract;267
38.2;32.1 Introduction;267
38.2.1;32.1.1 Related Work;268
38.3;32.2 The System;270
38.3.1;32.2.1 Multi-touch Table and Big Screen Display;270
38.3.2;32.2.2 VR-System;270
38.4;32.3 The Study;271
38.4.1;32.3.1 Method;271
38.5;32.4 Result and Discussion;271
38.5.1;32.4.1 Support Better Understanding and Communication;272
38.5.2;32.4.2 Support Better Creativity, Collaboration and Participation;272
38.5.3;32.4.3 Support for Different Design Spaces;272
38.6;32.5 Conclusions;273
38.7;References;274
39;33 Development and Usability Testing of a Panoramic Augmented Reality Environment for Fall Hazard Safety Training;275
39.1;Abstract;275
39.2;33.1 Introduction;275
39.3;33.2 Methodology;276
39.3.1;33.2.1 Panoramic Augmented Reality Platform Development;276
39.3.2;33.2.2 Fall Hazards Augmentations;278
39.3.3;33.2.3 Usability Testing;278
39.4;33.3 Results and Discussion;279
39.4.1;33.3.1 Participants;279
39.4.2;33.3.2 Hazard Identification Index;280
39.4.3;33.3.3 Platform Usability;280
39.4.4;33.3.4 Lessons Learned;282
39.5;33.4 Conclusion and Further Work;282
39.6;Acknowledgements;283
39.7;References;283
40;34 The Negative Effects of Mobile ICT on Productivity in Indian Construction Projects;284
40.1;Abstract;284
40.2;34.1 Introduction;284
40.3;34.2 Literature Review;285
40.4;34.3 Research Methodology;285
40.5;34.4 Results and Discussions;287
40.5.1;34.4.1 Pressure to Remain Accessible Outside the Work Hours;287
40.5.2;34.4.2 Temptation to Check It Frequently;287
40.5.3;34.4.3 Adverse Effects on Work-Life Balance;287
40.5.4;34.4.4 Compulsion to Work Outside the Normal Work Hours;288
40.5.5;34.4.5 Massive Amount of Information;288
40.5.6;34.4.6 Distraction;288
40.5.7;34.4.7 Less Time to Respond to Changes;288
40.5.8;34.4.8 Loss of Productive Time due to Personal Internet Usage;288
40.5.9;34.4.9 Adverse Effects on Health of the Users;288
40.5.10;34.4.10 Frequent Drawing Changes;289
40.6;34.5 Conclusion;289
40.7;Acknowledgements;289
40.8;References;289
41;35 Augmented Reality Combined with Location-Based Management System to Improve the Construction Process, Quality Control and Information Flow;291
41.1;Abstract;291
41.2;35.1 Introduction;291
41.3;35.2 Background;292
41.4;35.3 Proposed Solution;292
41.4.1;35.3.1 Concept of the AR4Construction Application;293
41.4.2;35.3.2 AR4Construction: System Architecture;293
41.4.3;35.3.3 Integration of BIM and Scheduling Data in AR4C;294
41.4.4;35.3.4 AR4C Functionalities;295
41.4.5;35.3.5 Testing and Validation;296
41.5;35.4 Conclusion;297
41.6;Acknowledgements;297
41.7;References;298
42;36 Workflow in Virtual Reality Tool Development for AEC Industry;299
42.1;Abstract;299
42.2;36.1 Introduction;299
42.3;36.2 Background;300
42.3.1;36.2.1 Organizational Structure in Developing Virtual Reality Content;300
42.3.2;36.2.2 Asset Creation and Optimization in Virtual Reality;300
42.3.3;36.2.3 Assets Optimization for Virtual Reality;301
42.3.4;36.2.4 Related Studies;302
42.4;36.3 Research Methodology;303
42.4.1;36.3.1 Study Population;304
42.4.2;36.3.2 Interview Questions;304
42.5;36.4 Interview Results;304
42.5.1;36.4.1 Organizational Structures in Content Development;304
42.5.2;36.4.2 Technical Aspects;305
42.5.3;36.4.3 Optimization Approach Taken by AEC Firms;306
42.5.4;36.4.4 Challenges in Assets Conversion;306
42.6;36.5 The Workflow;307
42.7;36.6 Conclusion and Suggestions;308
42.8;References;308
43;37 Implementation of Augmented Reality Throughout the Lifecycle of Construction Projects;309
43.1;Abstract;309
43.2;37.1 Introduction;309
43.3;37.2 Augmented Reality;310
43.3.1;37.2.1 Defining Augmented Reality;310
43.3.2;37.2.2 AR Systems and Enabling Technologies;310
43.4;37.3 Review Methodology;311
43.5;37.4 Augmented Reality Applications in the Project Lifecycle;311
43.5.1;37.4.1 AR and Conceptual Planning;311
43.5.2;37.4.2 AR and Design and Preconstruction;312
43.5.3;37.4.3 AR and Construction;312
43.5.4;37.4.4 AR and Operation and Maintenance;312
43.6;37.5 Benefits of AR Implementation;313
43.7;37.6 Challenges to AR Implementation;313
43.8;37.7 Conclusions;313
43.9;37.8 Recommendations for Future Study;314
43.10;References;314
44;38 Challenges Around Integrating Collaborative Immersive Technologies into a Large Infrastructure Engineering Project;316
44.1;Abstract;316
44.2;38.1 Introduction;316
44.2.1;38.1.1 Organizational Context for Innovation;317
44.2.2;38.1.2 Collaborative Virtual Reality in Construction Practice;317
44.2.3;38.1.3 Technology Frames as a Theoretical Lens;318
44.3;38.2 Methods;318
44.4;38.3 Findings;319
44.4.1;38.3.1 Nature of Technology;319
44.4.2;38.3.2 Technology Strategy;319
44.4.3;38.3.3 Technology in Use;320
44.5;38.4 Discussion and Conclusions;321
44.6;Acknowledgements;321
44.7;References;321
45;Computer Support in Design and Construction;323
46;39 Cybersecurity Management Framework for a Cloud-Based BIM Model;324
46.1;Abstract;324
46.2;39.1 Introduction;325
46.3;39.2 Related Studies;325
46.3.1;39.2.1 Building Information Modelling (BIM) Outline;325
46.3.2;39.2.2 Overview of Cloud Computing;326
46.3.2.1;39.2.2.1 Various Types of Cloud Models;326
46.4;39.3 Cloud-Based BIM Framework Development;326
46.5;39.4 Prototype Implementation;327
46.5.1;39.4.1 Security Challenges in Cloud Computing;327
46.5.2;39.4.2 Cloud-BIM Framework Architecture;327
46.6;39.5 Experimentation;329
46.7;39.6 Conclusion;331
46.8;References;332
47;40 A System for Early Detection of Maintainability Issues Using BIM;333
47.1;Abstract;333
47.2;40.1 Introduction;333
47.2.1;40.1.1 Research Problem;334
47.2.2;40.1.2 Research Objective;334
47.3;40.2 Background;334
47.3.1;40.2.1 Physical Design Characteristics Related to Maintainability;334
47.3.2;40.2.2 Fragmented Structure of Building Design;335
47.3.3;40.2.3 Understanding the Cost Effect of Maintainability Issues;336
47.3.4;40.2.4 Implementation of Maintainability in the Design Phase;336
47.4;40.3 Proposed System;336
47.5;40.4 Conclusion;338
47.6;References;338
48;41 Towards Automated Analysis of Ambiguity in Modular Construction Contract Documents (A Qualitative & Quantitative Study);340
48.1;Abstract;340
48.2;41.1 Introduction;340
48.3;41.2 Methodology;341
48.4;41.3 Results;344
48.5;41.4 Conclusion;346
48.6;References;347
49;42 Adopting Parametric Construction Analysis in Integrated Design Teams;348
49.1;Abstract;348
49.2;42.1 Introduction;348
49.2.1;42.1.1 Motivations for Integrated Design Studio Program;349
49.2.2;42.1.2 Definition of Parametric Design Approach;349
49.2.3;42.1.3 Selected Building Design Project’s Background;350
49.3;42.2 Methodology;350
49.3.1;42.2.1 Structure of the Integrated Design Team;350
49.3.2;42.2.2 Standard Workflow for the Integrated Studio Program;350
49.3.3;42.2.3 Project Evaluation Framework;351
49.4;42.3 Provided Tools and Methods;352
49.4.1;42.3.1 Architectural Analysis;352
49.4.2;42.3.2 Construction Analysis;353
49.4.3;42.3.3 Data Visualization;353
49.5;42.4 Conclusion;354
49.6;References;355
50;43 Integrating BIM, Optimization and a Multi-criteria Decision-Making Method in Building Design Process;356
50.1;Abstract;356
50.2;43.1 Introduction;356
50.3;43.2 Methodology;357
50.3.1;43.2.1 BIM;357
50.3.2;43.2.2 Preparing the BIM Model for Performing an Optimization;358
50.3.3;43.2.3 Optimization and MCDM;358
50.4;43.3 Results;361
50.5;43.4 Conclusions;363
50.6;Acknowledgements;363
50.7;Appendix 1;364
50.8;Appendix 2;365
50.9;References;366
51;44 A BIM-Based Decision Support System for Building Maintenance;367
51.1;Abstract;367
51.2;44.1 Introduction;367
51.3;44.2 Background of the Research;368
51.3.1;44.2.1 Decision Support Systems for Management of Buildings;368
51.3.2;44.2.2 Facility Condition Index;368
51.4;44.3 Research Methodology;369
51.5;44.4 DSS Development;370
51.6;44.5 Application of the DSS;371
51.7;44.6 Discussion and Conclusions;372
51.8;References;374
52;45 Structural Behavior Analysis and Optimization, Integrating MATLAB with Autodesk Robot;375
52.1;Abstract;375
52.2;45.1 Introduction;375
52.3;45.2 Methodology;376
52.3.1;45.2.1 Methodology Overview;376
52.3.2;45.2.2 Integration Between Robot API and MATLAB;378
52.4;45.3 Case Study;380
52.5;45.4 Conclusion;382
52.6;References;382
53;46 An Assessment of BIM-CAREM Against the Selected BIM Capability Assessment Models;383
53.1;Abstract;383
53.2;46.1 Introduction;383
53.3;46.2 BIM Capability and Maturity Assessment Models;384
53.3.1;46.2.1 Bim-Carem;384
53.3.2;46.2.2 Assessment Models Used in the Comparison;385
53.3.3;46.2.3 Comparison of the Models;386
53.4;46.3 Evaluation Using Case Study Data;388
53.5;46.4 Conclusions;390
53.6;References;391
54;47 Towards a BIM-Agile Method in Architectural Design Assessment of a Pedagogical Experiment;392
54.1;Abstract;392
54.2;47.1 Introduction;392
54.3;47.2 A Sector in Transition Without Changes in Management;393
54.3.1;47.2.1 France at the Heart of Digital Change;393
54.3.2;47.2.2 Emerging Project Management Practices;393
54.4;47.3 BIM Technology Needs Agile Practices;393
54.4.1;47.3.1 BIM Technology Brings Complexity;394
54.4.2;47.3.2 A Need for Elicitation, Refinement and Evaluation;394
54.4.3;47.3.3 Agility as a Coordination Vector;394
54.5;47.4 Agile Practices Identification and Adaptation;394
54.5.1;47.4.1 Design Matrix: Writing Down Intentions;394
54.5.2;47.4.2 Micro Poker: Put Everybody on the Same Page;395
54.5.3;47.4.3 Stand-up Meeting: Taking Stock;396
54.5.4;47.4.4 A BIM-Agile Coach to Oversee the Workshop;396
54.6;47.5 The Four Practices in Experimentation;397
54.6.1;47.5.1 Design and Digital Manufacturing Workshop;397
54.6.2;47.5.2 A Protocol for One Semester;397
54.6.3;47.5.3 Observations During the Workshop;398
54.6.4;47.5.4 The Survey Results;398
54.7;47.6 Conclusion and Opening on Professional Experiments;398
54.8;References;399
55;48 A Generalized Adaptive Framework for Automating Design Review Process: Technical Principles;400
55.1;Abstract;400
55.2;48.1 Introduction;400
55.3;48.2 Statement of Contribution;401
55.4;48.3 Goals and Objectives;401
55.5;48.4 Methodology;401
55.5.1;48.4.1 Theoretical Framework;401
55.5.2;48.4.2 Transformation Reasoning Algorithm (TRA);403
55.6;48.5 Conclusions;408
55.7;References;408
56;49 An Integrated Simulation-Based Methodology for Considering Weather Effects on Formwork Removal Times;410
56.1;Abstract;410
56.2;49.1 Introduction;410
56.3;49.2 Research Approach;411
56.4;49.3 Concrete Curing and Formwork Removal;411
56.4.1;49.3.1 Concrete Wall Construction;411
56.4.2;49.3.2 Concrete Curing;411
56.4.3;49.3.3 Measures to Shield Concrete Curing Against Cold Weather;412
56.4.4;49.3.4 Simulation of Formwork Removal Times;412
56.5;49.4 Discrete-Event Simulation Model;412
56.6;49.5 Simulation Experiments;413
56.6.1;49.5.1 Construction Project, Curing Strategies and Weather Statistics;413
56.6.2;49.5.2 Design of Experiments;415
56.6.3;49.5.3 Results;415
56.7;49.6 Discussion;417
56.8;References;417
57;50 Exploring Future Stakeholder Feedback on Performance-Based Design Across the Virtuality Continuum;418
57.1;Abstract;418
57.2;50.1 Introduction;418
57.3;50.2 Visualization Across the Virtuality Continuum;419
57.4;50.3 Methods;420
57.4.1;50.3.1 Kendeda Building for Innovative and Sustainable Design at Georgia Tech;420
57.4.2;50.3.2 Research Design and Hypotheses;420
57.5;50.4 Results;421
57.6;50.5 Discussion;423
57.7;50.6 Conclusion;423
57.8;References;423
58;51 A BIM Based Simulation Framework for Fire Evacuation Planning;425
58.1;Abstract;425
58.2;51.1 Introduction;425
58.2.1;51.1.1 Background and Motivation;425
58.3;51.2 Literature Review;426
58.3.1;51.2.1 Simulation Technologies;426
58.3.2;51.2.2 Critical Factors Affecting the Evacuation Time;426
58.3.3;51.2.3 Related Works on Fire Evacuation Design;427
58.4;51.3 Research Methodology and Implementation;427
58.4.1;51.3.1 Fire Simulation Design;428
58.4.2;51.3.2 Evacuation Simulation Design;428
58.5;51.4 Preliminary Results;429
58.5.1;51.4.1 Simulation Results;429
58.5.2;51.4.2 Application of Simulation Results;430
58.6;51.5 Conclusions and Future Work;431
58.7;References;431
59;52 Where Do We Look? An Eye-Tracking Study of Architectural Features in Building Design;433
59.1;Abstract;433
59.2;52.1 Introduction;433
59.3;52.2 Background;434
59.3.1;52.2.1 Eye-Tracking Applications;434
59.3.2;52.2.2 Eye-Tracking Metrics;435
59.4;52.3 Method;435
59.5;52.4 Result and Discussion;436
59.6;52.5 Conclusion and Future Work;439
59.7;References;439
60;53 Developing a Framework of a Multi-objective and Multi-criteria Based Approach for Integration of LCA-LCC and Dynamic Analysis in Industrialized Multi-storey Timber Construction;441
60.1;Abstract;441
60.2;53.1 Introduction;441
60.3;53.2 Background;442
60.3.1;53.2.1 Life Cycle Assessment and Life Cycle Costing;442
60.3.2;53.2.2 Dynamic Analysis of Timber Floor System;442
60.3.3;53.2.3 Analytical Network Process;442
60.4;53.3 Developing a Multi-objective and Multi-criteria Based Integrated Framework of LCA-LCC for Industrialized Timber Structures;443
60.4.1;53.3.1 Structural Design and Finite Element Models;443
60.4.1.1;53.3.1.1 Model 1;443
60.4.1.2;53.3.1.2 Model 2;443
60.4.2;53.3.2 Life Cycle Assessment;444
60.4.2.1;53.3.2.1 Definition of Goal and Scope;444
60.4.2.2;53.3.2.2 Life Cycle Inventory Analysis;444
60.4.2.3;53.3.2.3 ANP Model for LCC in Industrialized Timber Construction;444
60.4.2.4;53.3.2.4 Environmental Impact Assessment;445
60.4.2.5;53.3.2.5 Economic Impact Assessment;445
60.5;53.4 Discussion;446
60.6;53.5 Conclusions;447
60.7;Acknowledgements;447
60.8;References;447
61;54 Collective Decision-Making with 4D BIM: Collaboration Group Persona Study;449
61.1;Abstract;449
61.2;54.1 Introduction;449
61.3;54.2 4D Collective Decision-Making Support Development Steps;450
61.3.1;54.2.1 4D Collab Project Research Stages;450
61.3.2;54.2.2 Digital Interactive Interfaces for 4D BIM Collaborative Context;450
61.4;54.3 AEC Project Collaboration, Decision-Making and 4D BIM Uses;451
61.4.1;54.3.1 AEC Project Collaboration;451
61.4.2;54.3.2 AEC Project Decision-Making;451
61.4.3;54.3.3 AEC Project Lifecycle and 4D BIM Uses;451
61.5;54.4 Designing a Collective Decision-Making Support for 4D BIM;452
61.5.1;54.4.1 AEC Project Collaboration Groups and Decision-Making;452
61.5.2;54.4.2 4D BIM Uses AEC Project Collaboration Groups;454
61.5.3;54.4.3 Collaboration Personas Approach;454
61.5.4;54.4.4 Design Methodology of Collaboration Personae Proposition;454
61.5.5;54.4.5 4D BIM Uses and Collaboration Persona Study;455
61.6;54.5 Conclusion;455
61.7;Acknowledgements;456
61.8;References;456
62;55 Post-occupancy Evaluation Parameters in Multi-objective Optimization–Based Design Process;457
62.1;Abstract;457
62.2;55.1 Post-occupancy Evaluation Research;457
62.2.1;55.1.1 Definition and State of the Art;457
62.2.2;55.1.2 Benefits of POE;458
62.2.3;55.1.3 POE and Digitalization;458
62.3;55.2 Parametric Modelling Design Approach;459
62.4;55.3 Research Objective, Hypothesis and Research Methodology;459
62.4.1;55.3.1 Research Objectives;459
62.4.2;55.3.2 Hypothesis;460
62.4.3;55.3.3 Research Methodology;460
62.5;55.4 Proposed Conceptual Framework;460
62.5.1;55.4.1 A Conceptual Framework for Including the POE into a Parametric Approach;460
62.5.2;55.4.2 Application to POE-Based Floorplan Layout Design;461
62.5.3;55.4.3 First Prototype Implementing the Approach;461
62.5.4;55.4.4 Second Prototype;462
62.6;55.5 Validation;462
62.7;55.6 Discussion and Conclusion;463
62.8;Acknowledgements;463
62.9;References;464
63;56 Social Paradigms in Contemporary Airport Design;465
63.1;Abstract;465
63.2;56.1 Background;465
63.2.1;56.1.1 Capacity Challenge;466
63.2.2;56.1.2 Service Quality Challenge;466
63.2.3;56.1.3 The Role of the Architect as a Social Mediator in Design;466
63.3;56.2 State of the Art of Aviation Industry Design;467
63.3.1;56.2.1 Lean in Project Design Management;467
63.4;56.3 The Role of Virtual Design and Construction Technologies;467
63.5;56.4 Methodology;468
63.5.1;56.4.1 Development of the Innovative Methodology Model;469
63.6;56.5 Conclusions;470
63.7;References;470
64;57 A Method for Facilitating 4D Modeling by Automating Task Information Generation and Mapping;472
64.1;Abstract;472
64.2;57.1 Introduction and Background;472
64.3;57.2 Methodology;473
64.3.1;57.2.1 4D Modeling Process;473
64.3.2;57.2.2 A Method for Facilitating 4D Modeling Process;474
64.4;57.3 Test Case: 4D Modeling with Autodesk Office Building Example;476
64.5;57.4 Discussion and Conclusion;478
64.6;References;479
65;Intelligent Autonomous Systems;480
66;58 An Autonomous Thermal Scanning System with Which to Obtain 3D Thermal Models of Buildings;481
66.1;Abstract;481
66.2;58.1 Introduction: A Brief State of the Art;481
66.3;58.2 An Overview of the Autonomous Thermal Scanner System;482
66.4;58.3 Obtaining a 360-Thermal Point Cloud;483
66.4.1;58.3.1 Obtaining a Single 3D Thermal Shot;483
66.4.2;58.3.2 360-Thermal Point Cloud from a Position of the Robot;484
66.5;58.4 Autonomous Thermal Scanning;484
66.5.1;58.4.1 3D Data Processing to Find the Next Thermal Scan;484
66.5.2;58.4.2 Robot Navigation and Integrated 3D Thermal Model;485
66.6;58.5 Experimental Test;487
66.7;58.6 Conclusions;488
66.8;Acknowledgements;488
66.9;References;488
67;59 Productivity Improvement in the Construction Industry: A Case Study of Mechanization in Singapore;489
67.1;Abstract;489
67.2;59.1 Introduction;489
67.3;59.2 Background;490
67.3.1;59.2.1 Mechanization to Improve Productivity;490
67.3.2;59.2.2 Singapore Initiatives;490
67.4;59.3 Methodology;491
67.5;59.4 Data Analysis and Results;492
67.6;59.5 Discussion and Recommendations;493
67.7;59.6 Conclusions;494
67.8;References;494
68;60 Automated Building Information Models Reconstruction Using 2D Mechanical Drawings;496
68.1;Abstract;496
68.2;60.1 Introduction;496
68.3;60.2 Method;497
68.3.1;60.2.1 Background Research;497
68.3.2;60.2.2 Challenges;498
68.3.3;60.2.3 Available Information by Mechanical Components;498
68.3.4;60.2.4 Relationship Between Symbols and the Surrounding Parts;499
68.3.5;60.2.5 Rules for Reasoning the Relationship;500
68.4;60.3 Results;500
68.4.1;60.3.1 Vision of the Framework;500
68.4.2;60.3.2 Prototype Implementation;500
68.5;60.4 Conclusion;502
68.6;References;502
69;61 Architectural Symmetry Detection from 3D Urban Point Clouds: A Derivative-Free Optimization (DFO) Approach;504
69.1;Abstract;504
69.2;61.1 Introduction;504
69.3;61.2 Background;505
69.3.1;61.2.1 Symmetry;505
69.3.2;61.2.2 Symmetry Detection Methods;506
69.4;61.3 Methodology;506
69.5;61.4 Experimental Results on a Pilot Case;507
69.6;61.5 Conclusion;509
69.7;Acknowledgements;509
69.8;References;510
70;62 Sequential Pattern Analyses of Damages on Bridge Elements for Preventive Maintenance;511
70.1;Abstract;511
70.2;62.1 Introduction;511
70.3;62.2 Research Methodology;512
70.3.1;62.2.1 Data Collection;512
70.3.2;62.2.2 Data Preprocessing;513
70.3.3;62.2.3 Cluster Analysis;513
70.3.4;62.2.4 Sequential Pattern Mining;514
70.4;62.3 Preliminary Test;515
70.5;62.4 Conclusions;516
70.6;Acknowledgements;516
70.7;References;516
71;63 Sound Event Recognition-Based Classification Model for Automated Emergency Detection in Indoor Environment;518
71.1;Abstract;518
71.2;63.1 Introduction;518
71.3;63.2 Preliminary Study;519
71.3.1;63.2.1 Sound Types of Indoor Emergencies;519
71.3.2;63.2.2 Sound Event Recognition;519
71.4;63.3 Research Framework;520
71.4.1;63.3.1 Preprocessing;520
71.4.2;63.3.2 Feature Extraction;520
71.4.3;63.3.3 Model Development;521
71.4.4;63.3.4 Evaluation;521
71.5;63.4 Experiment and Result;521
71.5.1;63.4.1 Data Collection;521
71.5.2;63.4.2 Experiment Setup;522
71.5.3;63.4.3 Results and Discussions;522
71.6;63.5 Conclusions;523
71.7;Acknowledgements;523
71.8;References;523
72;64 Improved Window Detection in Facade Images;525
72.1;Abstract;525
72.2;64.1 Introduction;525
72.3;64.2 Background;526
72.4;64.3 Methodology;527
72.5;64.4 Experiments;529
72.5.1;64.4.1 Dataset;529
72.5.2;64.4.2 Results;530
72.5.3;64.4.3 Discussion;530
72.6;64.5 Conclusion;530
72.7;References;531
73;65 Path Planning of LiDAR-Equipped UAV for Bridge Inspection Considering Potential Locations of Defects;532
73.1;Abstract;532
73.2;65.1 Introduction;532
73.3;65.2 Literature Review;533
73.4;65.3 Proposed Method;534
73.5;65.4 Case Study;537
73.6;65.5 Conclusion and Future Work;539
73.7;References;539
74;66 Automatic Annotation of Web Images for Domain-Specific Crack Classification;540
74.1;Abstract;540
74.2;66.1 Introduction;540
74.3;66.2 Related Work;541
74.3.1;66.2.1 Crack Detection and Classification;541
74.3.2;66.2.2 Crack Types;542
74.3.3;66.2.3 Convolutional Neural Networks;542
74.3.4;66.2.4 Web Image Retrieval and Existing Datasets;542
74.4;66.3 Methodology;542
74.4.1;66.3.1 Class Image Retrieval;542
74.4.2;66.3.2 Weak Convolution Neural Network Classification;543
74.4.3;66.3.3 Image Retrieval and Annotation: Creating the Pseudo Training Data;543
74.4.4;66.3.4 Evaluation;544
74.5;66.4 Experimental Results and Discussion;544
74.5.1;66.4.1 Classifier Training;544
74.5.2;66.4.2 Classifier Evaluation;545
74.5.3;66.4.3 Performance Results;545
74.5.4;66.4.4 Error Analysis;545
74.6;66.5 Conclusions and Future Work;546
74.7;References;546
75;67 A Machine Learning Approach for Compliance Checking-Specific Semantic Role Labeling of Building Code Sentences;548
75.1;Abstract;548
75.2;67.1 Introduction;548
75.3;67.2 Background;549
75.3.1;67.2.1 Semantic Role Labeling;549
75.3.2;67.2.2 Supervised Learning-Based Sequence Labeling;549
75.3.3;67.2.3 Parsing;550
75.4;67.3 Semantic Role Labeling in Automated Compliance Checking;550
75.5;67.4 Proposed Machine Learning Approach for Semantic Role Labeling of Building Code Sentences;550
75.5.1;67.4.1 Data Preparation and Preprocessing;551
75.5.2;67.4.2 Training Data Adaptation;551
75.5.3;67.4.3 Feature Preparation;551
75.5.4;67.4.4 CRF Semantic Role Labeler Training;552
75.5.5;67.4.5 Labeling Using CRF and Evaluation;552
75.6;67.5 Preliminary Experimental Results and Discussion;553
75.6.1;67.5.1 Model Training;553
75.6.2;67.5.2 Experimental Results;553
75.6.3;67.5.3 Error Analysis;554
75.7;67.6 Conclusion;554
75.8;References;555
76;68 Requirement Text Detection from Contract Packages to Support Project Definition Determination;556
76.1;Abstract;556
76.2;68.1 Introduction;556
76.3;68.2 Project Scope Definition Determination;557
76.4;68.3 Related Studies and Gap of Knowledge;558
76.4.1;68.3.1 Natural Language Processing in AEC/F Industry;558
76.4.2;68.3.2 Previous Studies and Research Gap;558
76.5;68.4 Proposed NLP-Based Method for Scope Definition;559
76.6;68.5 Requirement Text Detection;560
76.6.1;68.5.1 Methodology;560
76.6.2;68.5.2 Data Collection and Preparation;561
76.6.3;68.5.3 Results and Discussions;561
76.7;68.6 Conclusions;562
76.8;References;562
77;69 In Search of Open and Practical Language-Driven BIM-Based Automated Rule Checking Systems;564
77.1;Abstract;564
77.2;69.1 Introduction;564
77.3;69.2 Review of Language-Based Rule Checking System (RCS);565
77.4;69.3 The Eleven-Criteria Metrics Assessment;566
77.5;69.4 Conclusions;570
77.6;References;571
78;70 Image-Based Localization for Facilitating Construction Field Reporting on Mobile Devices;572
78.1;Abstract;572
78.2;70.1 Introduction;572
78.3;70.2 Background;573
78.4;70.3 Related Work;573
78.5;70.4 Problem Statement and Objective;574
78.6;70.5 Implementation and System Description;574
78.6.1;70.5.1 ORBSLAM-Based Localization System;574
78.6.2;70.5.2 Improved Mapping and Localization System;574
78.7;70.6 Case Study;575
78.7.1;70.6.1 Data Collection;575
78.7.2;70.6.2 Ground Truth;575
78.7.3;70.6.3 Data Testing;575
78.7.4;70.6.4 Experimental Results and Accuracy Evaluation;576
78.7.5;70.6.5 System Efficiency;578
78.8;70.7 Conclusion and Future Work;578
78.9;References;579
79;71 Towards an Automated Asphalt Paving Construction Inspection Operation;580
79.1;Abstract;580
79.2;71.1 Introduction;580
79.3;71.2 Background;581
79.4;71.3 Framework;581
79.4.1;71.3.1 Potential Technologies;581
79.4.2;71.3.2 E-ticketing;581
79.4.3;71.3.3 Paver Mounted Thermal Profiler;582
79.4.4;71.3.4 Intelligent Compaction;583
79.5;71.4 Results of Previous Studies;584
79.5.1;71.4.1 Technology 1—E-ticketing;584
79.5.2;71.4.2 Technology 2—Paver Mounted Thermal Profiler;585
79.5.3;71.4.3 Technology 3—Intelligent Compaction;585
79.6;71.5 Model Framework;586
79.7;71.6 Limitations;586
79.8;71.7 Future Work;587
79.9;71.8 Conclusions;587
79.10;Acknowledgements/Disclaimer;587
79.11;References;587
80;72 Computer Vision and Deep Learning for Real-Time Pavement Distress Detection;588
80.1;Abstract;588
80.2;72.1 Introduction;588
80.3;72.2 Related Work;589
80.4;72.3 Research Questions and Objectives;589
80.5;72.4 Methodology;589
80.6;72.5 Implementation;591
80.6.1;72.5.1 Rough Detection;591
80.6.2;72.5.2 Fine Detection;592
80.6.3;72.5.3 Georeferencing and Location Clustering;592
80.7;72.6 Case Studies;592
80.7.1;72.6.1 Validation;592
80.7.2;72.6.2 Performance Evaluation;593
80.8;72.7 Summary and Outlook;593
80.9;References;594
81;73 A Flight Simulator for Unmanned Aerial Vehicle Flights Over Construction Job Sites;595
81.1;Abstract;595
81.2;73.1 Introduction;595
81.3;73.2 Proximity and Collision Avoidance in Construction Safety;596
81.3.1;73.2.1 Spatial Safety of UAV in Construction Environment;597
81.4;73.3 Principles of Unmanned Aerial Vehicle Flight Simulator;597
81.4.1;73.3.1 Considerations for UAV Simulation;598
81.4.2;73.3.2 Software Simulation Tools;598
81.4.3;73.3.3 Drone Movement;598
81.5;73.4 Unmanned Aerial Vehicle Flight Simulator;599
81.6;73.5 Discussion and Conclusion;601
81.7;References;601
82;74 Bridge Inspection Using Bridge Information Modeling (BrIM) and Unmanned Aerial System (UAS);603
82.1;Abstract;603
82.2;74.1 Introduction;603
82.3;74.2 Background;604
82.3.1;74.2.1 Current Bridge Inspection Practice and Problems Identified;604
82.3.2;74.2.2 Technology Used in Data Acquisition and Processing for Inspection;604
82.3.3;74.2.3 Technology Used in Data Management for Inspection;605
82.4;74.3 Research Methodology;605
82.5;74.4 Data Collection and Preliminary Results;606
82.5.1;74.4.1 UAS Data Collection;607
82.5.2;74.4.2 Preliminary Results;607
82.6;74.5 Conclusions and Future Work;609
82.7;References;610
83;Cyber-Physical-Systems;611
84;75 Comparison Between Current Methods of Indoor Network Analysis for Emergency Response Through BIM/CAD-GIS Integration;612
84.1;Abstract;612
84.2;75.1 Introduction;612
84.3;75.2 Literature Review;613
84.3.1;75.2.1 Application of BIM in Network Analysis and Navigation;613
84.3.2;75.2.2 Application of GIS in Network Analysis and Navigation;614
84.3.3;75.2.3 Application of BIM/CAD-GIS Integration in Network Analysis and Navigation;614
84.4;75.3 Methodology;615
84.5;75.4 Workflow;615
84.5.1;75.4.1 Geodatabase Creation from CAD Data;616
84.5.2;75.4.2 Indoor Network;616
84.6;75.5 Model Testing and Results;617
84.7;75.6 Conclusion;619
84.8;References;619
85;76 Instrumentation and Data Collection Methodology to Enhance Productivity in Construction Sites Using Embedded Systems and IoT Technologies;621
85.1;Abstract;621
85.2;76.1 Introduction;621
85.3;76.2 Methodology;622
85.3.1;76.2.1 System Evaluation Procedures;623
85.4;76.3 Results and Discussion;624
85.4.1;76.3.1 Test Results;624
85.4.2;76.3.2 System Performance;625
85.4.3;76.3.3 System Adoption and Implementation;625
85.4.4;76.3.4 Productivity Measurements Analysis;625
85.5;76.4 Conclusions;627
85.6;References;628
86;77 A Cyber-Physical Middleware Platform for Buildings in Smart Cities;629
86.1;Abstract;629
86.2;77.1 Introduction;629
86.3;77.2 Background and Related Work;631
86.4;77.3 Development of the Cyber-Physical Middleware;631
86.5;77.4 Analysis and Discussion;632
86.5.1;77.4.1 Case Study of 3for2 Office Building;632
86.5.2;77.4.2 Middleware as Smart Building Sensing Service in Cities;634
86.6;77.5 Conclusion, Limitation and Future Work;635
86.7;Acknowledgements;635
86.8;References;636
87;78 A Framework for CPS-Based Real-Time Mobile Crane Operations;637
87.1;Abstract;637
87.2;78.1 Introduction;637
87.3;78.2 Background and Motivation;638
87.4;78.3 Bi-directional Coordination in Active Monitoring and Control of Mobile Crane Operations;638
87.4.1;78.3.1 Mobile Crane Motion Data Capture;639
87.4.2;78.3.2 Site Information Acquisition;639
87.4.3;78.3.3 Mobile Devices for Displaying Control Feedbacks;639
87.4.4;78.3.4 Communication Network;639
87.5;78.4 System Architecture for Real-Time Mobile Crane Operations;639
87.5.1;78.4.1 Object Layer;640
87.5.2;78.4.2 Sensing Layer;640
87.5.3;78.4.3 Communication Layer;641
87.5.4;78.4.4 Analysis Layer;641
87.5.5;78.4.5 Actuation Layer;642
87.6;78.5 Conclusions;642
87.7;Acknowledgements;644
87.8;References;644
88;79 Drive Towards Real-Time Reasoning of Building Performance: Development of a Live, Cloud-Based System;645
88.1;Abstract;645
88.2;79.1 Introduction;645
88.3;79.2 Literature Review;646
88.4;79.3 The Live Platform;647
88.4.1;79.3.1 Sensor Network;648
88.5;79.4 Mobile App;649
88.5.1;79.4.1 POE Design Principles;649
88.5.2;79.4.2 Human–Computer Interaction (HCI) Design Principles;649
88.5.3;79.4.3 App Development;649
88.6;79.5 Testing and Initial Data Collection;650
88.7;79.6 Conclusions;651
88.8;References;651
89;80 Bayesian Network Modeling of Airport Runway Incursion Occurring Processes for Predictive Accident Control;653
89.1;Abstract;653
89.2;80.1 Introduction;653
89.3;80.2 Background Studies;654
89.4;80.3 Methodology for Predicting Runway Incursions Using Bayesian Network (BN) Modeling;654
89.4.1;80.3.1 Data Collection;655
89.4.2;80.3.2 Process and Communication Modeling;657
89.4.3;80.3.3 Bayesian Network (BN) Modeling;658
89.5;80.4 Major Findings;658
89.5.1;80.4.1 The Probabilistic Relationship Between Selected Contextual Factors and Communication Errors;659
89.5.2;80.4.2 The Probabilistic Relationship Between Communication Errors and RIs;659
89.6;80.5 Conclusion and Future Work;659
89.7;Acknowledgements;660
89.8;References;660
90;81 A Low-Cost System for Monitoring Tower Crane Productivity Cycles Combining Inertial Measurement Units, Load Cells and Lora Networks;661
90.1;Abstract;661
90.2;81.1 Introduction;662
90.3;81.2 Methodology;662
90.3.1;81.2.1 System Technical Description;662
90.3.2;81.2.2 System Calibration;663
90.3.2.1;81.2.2.1 Calibration of the Sensors at the Laboratory;663
90.3.2.2;81.2.2.2 Field Tests;664
90.4;81.3 Results and Discussion;664
90.4.1;81.3.1 Calibration and Testing;665
90.4.1.1;81.3.1.1 Sensors Calibration in Laboratory;665
90.4.1.2;81.3.1.2 Field Tests;666
90.4.2;81.3.2 Comparison with Other Systems;667
90.5;81.4 Conclusions;668
90.6;References;668
91;82 The Interface Layer of a BIM-IoT Prototype for Energy Consumption Monitoring;669
91.1;Abstract;669
91.2;82.1 Introduction;669
91.3;82.2 Related Work;670
91.4;82.3 Methodology;671
91.5;82.4 Prototype System;671
91.5.1;82.4.1 BIM Record Model and Feedback Strategy;672
91.5.2;82.4.2 Actual Information Input in the BIM Record Model;673
91.5.3;82.4.3 Implementing the BIM-IoT Prototype to Pilot Instantiation;673
91.5.4;82.4.4 Evaluating the BIM-IoT Prototype;675
91.6;82.5 Conclusion;676
91.7;References;676
92;83 Predicting Energy Consumption of Office Buildings: A Hybrid Machine Learning-Based Approach;678
92.1;Abstract;678
92.2;83.1 Introduction;678
92.3;83.2 Background;679
92.4;83.3 Methodology;679
92.4.1;83.3.1 Weather-Related Factor Prediction Model Development;680
92.4.2;83.3.2 Occupant Behavior-Related Factor Prediction Model Development;680
92.4.3;83.3.3 Ensembler Model Development;681
92.4.4;83.3.4 Performance Evaluation;681
92.5;83.4 Preliminary Results and Discussion;681
92.5.1;83.4.1 Weather-Related Factor Prediction;681
92.5.2;83.4.2 Occupant Behavior-Related Factor Prediction;681
92.5.3;83.4.3 Ensembler Model Prediction;682
92.6;83.5 Conclusion;682
92.7;Acknowledgements;683
92.8;References;683
93;Computing and Innovations for Design Sustainable Buildings and Infrastructure;684
94;84 Thermal Performance Assessment of Curtain Walls of Fully Operational Buildings Using Infrared Thermography and Unmanned Aerial Vehicles;685
94.1;Abstract;685
94.2;84.1 Introduction;685
94.3;84.2 Related Work;686
94.4;84.3 Methodology;687
94.4.1;84.3.1 Formulation;687
94.4.2;84.3.2 Modelling;688
94.4.3;84.3.3 Survey and Data Management;689
94.4.4;84.3.4 Discussion;689
94.5;84.4 Case Example;690
94.6;84.5 Conclusion;691
94.7;References;691
95;85 BIM and Lean-Business Process Reengineering for Energy Management Optimization of Existing Building Stock;692
95.1;Abstract;692
95.2;85.1 Introduction;692
95.3;85.2 Related Work;693
95.4;85.3 Methodology;693
95.4.1;85.3.1 BIM Energy Analysis;693
95.4.2;85.3.2 Lean Business Process Reengineering for Energy Efficiency;694
95.4.3;85.3.3 Building Information Model and Business Process Model Alignment;694
95.5;85.4 Case Study;695
95.5.1;85.4.1 Building Requirements;695
95.6;85.5 Framework Application;695
95.7;85.6 Setting Up Future Research;698
95.8;85.7 Conclusions;698
95.9;References;699
96;86 Geographic Information Systems (GIS) Based Visual Analytics Framework for Highway Project Performance Evaluation;700
96.1;Abstract;700
96.2;86.1 Introduction;700
96.3;86.2 Background;701
96.3.1;86.2.1 Web Data Extraction Techniques;701
96.3.2;86.2.2 Natural Language Processing;701
96.3.3;86.2.3 Geographic Information System and Spatial Interpolation Methods;702
96.4;86.3 GIS-Based Visual Analytics Framework for Highway Project Performance Evaluation;702
96.5;86.4 Conclusion;703
96.6;References;704
97;87 Usage of Interface Management in Adaptive Reuse of Buildings;706
97.1;Abstract;706
97.2;87.1 Introduction;706
97.3;87.2 Background;707
97.3.1;87.2.1 The Role of Adaptive Reuse in a Circular Economy;707
97.3.2;87.2.2 The Concept of Interface Management;707
97.4;87.3 Research Methodology;708
97.5;87.4 Barriers in Adaptive Reuse Projects;708
97.6;87.5 Common Interface Problems in Construction Projects;708
97.7;87.6 Case Study;709
97.7.1;87.6.1 Physical Interfaces;710
97.7.2;87.6.2 Contractual and Organizational Interfaces;711
97.8;87.7 Conclusion;711
97.9;References;711
98;88 Semantic Enrichment of As-is BIMs for Building Energy Simulation;713
98.1;Abstract;713
98.2;88.1 Introduction;713
98.3;88.2 Semantic Requirements;714
98.4;88.3 Semantic Enrichment Approach;716
98.4.1;88.3.1 Enrichment of Semantics Required by Second-Level SBs;716
98.4.2;88.3.2 Enrichment of Semantics Required by IFC Specifications;718
98.4.3;88.3.3 Enriched IFC Model Generation;718
98.5;88.4 Approach Implementation and Validation;718
98.6;88.5 Conclusions and Future Work;719
98.7;Acknowledgements;720
98.8;References;720
99;89 Proof of Concept for a BIM-Based Material Passport;721
99.1;Abstract;721
99.2;89.1 Introduction;721
99.3;89.2 Literature Review;722
99.4;89.3 Methodology;723
99.5;89.4 Workflow Design;724
99.6;89.5 Conclusion;726
99.7;References;727
100;90 Learning from Class-Imbalanced Bridge and Weather Data for Supporting Bridge Deterioration Prediction;728
100.1;Abstract;728
100.2;90.1 Introduction;728
100.3;90.2 Background;729
100.3.1;90.2.1 State of the Art in Bridge Deterioration Prediction;729
100.3.2;90.2.2 Knowledge Gaps;729
100.4;90.3 Evaluation Method;730
100.4.1;90.3.1 Data Collection;730
100.4.2;90.3.2 Data Preprocessing;731
100.4.3;90.3.3 Data Sampling;731
100.4.4;90.3.4 Deep Neural Network Modeling;731
100.4.5;90.3.5 Performance Evaluation;732
100.5;90.4 Preliminary Experimental Results and Discussion;732
100.5.1;90.4.1 Performances of Data Sampling Methods;732
100.5.2;90.4.2 Impact of Weather Data on Bridge Deterioration Prediction;733
100.6;90.5 Conclusions, Limitations, and Future Work;734
100.7;Acknowledgements;734
100.8;References;734
101;91 Machine-Learning-Based Model for Supporting Energy Performance Benchmarking for Office Buildings;736
101.1;Abstract;736
101.2;91.1 Introduction;736
101.3;91.2 Background;737
101.4;91.3 Research Methodology for the Proposed ML-Based Model for Supporting Energy Performance Benchmarking;738
101.4.1;91.3.1 Data Preparation;738
101.4.2;91.3.2 Feature Extraction;739
101.4.3;91.3.3 Model Development;739
101.4.4;91.3.4 Performance Evaluation;740
101.5;91.4 Preliminary Results and Discussion;740
101.6;91.5 Conclusions and Future Work;742
101.7;Acknowledgements;742
101.8;References;742
102;92 Occupants Behavior-Based Design Study Using BIM-GIS Integration: An Alternative Design Approach for Architects;744
102.1;Abstract;744
102.2;92.1 Introduction;744
102.3;92.2 Background;745
102.3.1;92.2.1 Tracking Devices;745
102.3.2;92.2.2 Simulation Modeling;746
102.3.3;92.2.3 BIM-GIS;746
102.4;92.3 Methodology;746
102.5;92.4 Results;748
102.6;92.5 Conclusion;749
102.7;References;750
103;93 Standardization of Whole Life Cost Estimation for Early Design Decision-Making Utilizing BIM;752
103.1;Abstract;752
103.2;93.1 Introduction;752
103.3;93.2 Background and Related Work;753
103.3.1;93.2.1 WLC Definition and Scope;753
103.3.2;93.2.2 Sources of Data;754
103.3.3;93.2.3 Integrative Design Process;754
103.4;93.3 Research Strategy and Methods;754
103.4.1;93.3.1 Framework Development;754
103.4.2;93.3.2 Conceptual Process Modeling Using IDEF3;754
103.5;93.4 Findings and Results;755
103.5.1;93.4.1 WLC Software Capabilities;755
103.5.2;93.4.2 Interoperability and Data Structure;755
103.5.3;93.4.3 Information Flows—Process Model Development;756
103.6;93.5 Discussion and Conclusion;757
103.6.1;93.5.1 Challenges to WLC Estimation Using BIM;757
103.6.2;93.5.2 Next Steps;757
103.7;References;758
104;94 Data Model Centered Road Maintenance Support System Using Mobile Device;759
104.1;Abstract;759
104.2;94.1 Introduction;759
104.3;94.2 Road Data Model;760
104.4;94.3 System Design;760
104.4.1;94.3.1 Design Concept;760
104.4.2;94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles94.3.2 Design Principles;761
104.5;94.4 Development of System;762
104.5.1;94.4.1 Construction of Three-Dimensional Printed Model;762
104.5.2;94.4.2 RFID Usage;763
104.5.3;94.4.3 System Functions;763
104.6;94.5 Evaluation of System;764
104.6.1;94.5.1 Experimental Scenario;764
104.6.2;94.5.2 Consideration;764
104.7;94.6 Conclusion;766
104.8;References;766
105;95 Ontology-Based Semantic Modeling of Disaster Resilient Construction Operations: Towards a Knowledge-Based Decision Support System;767
105.1;Abstract;767
105.2;95.1 Introduction;767
105.3;95.2 Methodology;768
105.4;95.3 Main DRCOs-Onto Model;768
105.5;95.4 Disaster Resilience Concept Hierarchy;769
105.5.1;95.4.1 Construction Operation Impact Modality View;770
105.5.2;95.4.2 Resilience Characteristic Modality View;771
105.5.3;95.4.3 Disaster Management Cycle Modality View;772
105.6;95.5 Evaluation of DRCOs-Onto;772
105.7;95.6 Application of DRCOs-Onto in a Knowledge-Based Decision Support System;772
105.8;95.7 Conclusions and Future Work;773
105.9;References;773
106;96 A Methodology for Real-Time 3D Visualization of Asphalt Thermal Behaviour During Road Construction;775
106.1;Abstract;775
106.2;96.1 Introduction;775
106.3;96.2 Real-Time Asphalt Temperature Monitoring and Prediction;776
106.3.1;96.2.1 Principles of 3D Temperature Contour Plots;776
106.3.2;96.2.2 The Architecture of the Proposed System;778
106.3.3;96.2.3 Reference Station;778
106.3.4;96.2.4 Paver Station;779
106.3.5;96.2.5 Data Analysis, Processing Centre Architecture;779
106.4;96.3 Implementation and Case Study;780
106.5;96.4 Conclusions;782
106.6;References;782
107;97 Eliminating Building and Construction Waste with Computer-Aided Manufacturing and Prefabrication;783
107.1;Abstract;783
107.2;97.1 Introduction;783
107.3;97.2 Background, Motivation and Objective;784
107.3.1;97.2.1 Summary of Study Aims;785
107.4;97.3 Method;785
107.4.1;97.3.1 Technical Summary of Examined Systems;786
107.5;97.4 Analysis Results;789
107.6;97.5 Discussion;789
107.6.1;97.5.1 Overall Performance;789
107.6.2;97.5.2 CNC Manufacturing;790
107.7;97.6 Study Limitations and Continuations;791
107.8;97.7 Conclusions;791
107.9;References;792
108;98 A Methodological Proposal for Risk Analysis in the Construction of Tunnels;793
108.1;Abstract;793
108.2;98.1 Introduction;793
108.3;98.2 The State of the Art of Risk Management in Infrastructure Projects;794
108.4;98.3 A Methodological Proposal for Risk Analysis in the Construction of Tunnels;795
108.4.1;98.3.1 Risk Identification;796
108.4.2;98.3.2 Qualitative Risk Assessment—Risk Nesting;796
108.4.3;98.3.3 Risks/Activity Matrix;796
108.4.4;98.3.4 Quantitative Risk Assessment—Probability (Bayesian Networks);796
108.4.5;98.3.5 Quantitative Risk Assessment—Impact;797
108.4.6;98.3.6 Risk Value Calculation;797
108.4.7;98.3.7 Data Review and Adjustment to Entry Project Data;798
108.4.8;98.3.8 Scheduling Adjustment with Time Buffers;798
108.4.9;98.3.9 Results Revision;798
108.5;98.4 Application of the Proposed Methodology;799
108.6;98.5 Conclusions;799
108.7;References;799
109;99 Technology Alternatives for Workplace Safety Risk Mitigation in Construction: Exploratory Study;801
109.1;Abstract;801
109.2;99.1 Introduction;801
109.3;99.2 Study Objective;802
109.4;99.3 Hierarchy of Controls;802
109.4.1;99.3.1 Personal Protective Equipment (PPE);803
109.4.2;99.3.2 Administrative Controls;803
109.4.3;99.3.3 Engineering Controls;803
109.4.4;99.3.4 Substitution of Hazards;803
109.4.5;99.3.5 Elimination of Hazards;804
109.5;99.4 Technological Controls for Workplace Safety Risk;804
109.5.1;99.4.1 Smart Personal Protective Equipment (PPE);804
109.5.2;99.4.2 Administrative Controls Through Technology;804
109.5.3;99.4.3 Engineering Controls Through Technology;805
109.5.4;99.4.4 Hazard Substitution and Elimination Through Technology;805
109.6;99.5 Summary and Conclusions;806
109.7;References;806
110;Education, Training, and Learning with Technologies;808
111;100 BIM4VET, Towards BIM Training Recommendation for AEC Professionals;809
111.1;Abstract;809
111.2;100.1 Introduction;809
111.3;100.2 Background;810
111.4;100.3 Methodology;810
111.5;100.4 BIM4VET Proposal;811
111.5.1;100.4.1 BIM Profiles and Competence Matrix;811
111.5.2;100.4.2 BIM Training Benchmark and Connection with the BIM Competence Matrix;812
111.5.3;100.4.3 BIM4VET Application;812
111.5.4;100.4.4 BIM4VET Application Assessment;814
111.6;100.5 Conclusion and Prospects;815
111.7;Acknowledgements;815
111.8;References;815
112;101 Teaching Effective Collaborative Information Delivery and Management;817
112.1;Abstract;817
112.2;101.1 Introduction;817
112.3;101.2 Background;818
112.3.1;101.2.1 Approaches to BIM Process Planning;818
112.3.2;101.2.2 Pedagogy Around Teaching BIM-Enabled Collaboration;818
112.4;101.3 Method: Course Overview and Objectives;819
112.5;101.4 Findings and Lessons Learned;821
112.6;101.5 Conclusions;822
112.7;References;822
113;102 A Story of Online Construction Masters’ Project: Is an Active Online Independent Study Course Possible?;824
113.1;Abstract;824
113.2;102.1 Introduction;824
113.3;102.2 Background;825
113.4;102.3 Methodology;825
113.4.1;102.3.1 Principles of Online Independent Study Development;825
113.4.2;102.3.2 The New Online Masters’ Project Delivery Model;826
113.4.3;102.3.3 The Pilot Run of the Online Masters’ Project;827
113.5;102.4 Best Practices for Delivering Online Independent Study Courses;829
113.6;102.5 Conclusions;830
113.7;Acknowledgements;830
113.8;References;830
114;103 Lessons Learned from a Multi-year Initiative to Integrate Data-Driven Design Using BIM into Undergraduate Architectural Education;831
114.1;Abstract;831
114.2;103.1 Introduction;831
114.3;103.2 BIM Integration Toolkit;832
114.4;103.3 Case Study Methodology;832
114.5;103.4 Case Study Results;833
114.5.1;103.4.1 First Iteration (Years 1 and 2);834
114.6;103.5 Second Iteration (Year 3);836
114.7;103.6 Discussion;837
114.8;103.7 Conclusions;837
114.9;Acknowledgements;838
114.10;References;838
115;104 Integrated and Collaborative Architectural Design: 10 Years of Experience Teaching BIM;839
115.1;Abstract;839
115.2;104.1 Introduction;839
115.3;104.2 Background;840
115.3.1;104.2.1 About the “Design Theory X: Integrated and Collaborative Design Studio” Course;840
115.3.2;104.2.2 Teaching Applied Informatics to Architecture in Brazil in the Years 2000;840
115.3.3;104.2.3 Evolution of Teaching BIM and Its Influence in This Course;840
115.4;104.3 Research Method;841
115.5;104.4 Results;841
115.5.1;104.4.1 Results of the Research on the Evolution of the Course;841
115.5.2;104.4.2 Specific Characteristics of the 2017 Course;841
115.5.3;104.4.3 Evaluation of Performance Based on Model Data Extraction;843
115.5.4;104.4.4 Comparisons Between the Course of 2017 and Previous Ones;845
115.6;104.5 Discussion;845
115.7;104.6 Conclusion;845
115.8;References;845
116;105 Toward a Roadmap for BIM Adoption and Implementation by Small-Sized Construction Companies;847
116.1;Abstract;847
116.2;105.1 Introduction;847
116.3;105.2 Background;848
116.3.1;105.2.1 Innovativeness in the Construction Industry;848
116.3.2;105.2.2 The Effect of Workers’ Age on New Technology Adoption;848
116.3.3;105.2.3 BIM Applications in the Construction Industry;849
116.3.4;105.2.4 Trade Specific BIM Applications;849
116.3.5;105.2.5 Effect of Project Delivery Method on BIM Implementation;850
116.4;105.3 Methodology and Data Collection;850
116.5;105.4 Results;851
116.5.1;105.4.1 Limitations and Further Research;852
116.6;105.5 Conclusions;852
116.7;References;853
117;106 BIM Implementation in Mega Projects: Challenges and Enablers in the Istanbul Grand Airport (IGA) Project;854
117.1;Abstract;854
117.2;106.1 Introduction;854
117.3;106.2 Background;855
117.4;106.3 Methodology;856
117.4.1;106.3.1 Challenges;857
117.4.2;106.3.2 Enablers;858
117.5;106.4 Conclusion;860
117.6;References;861
118;107 Virtual Learning for Workers in Robot Deployed Construction Sites;862
118.1;Abstract;862
118.2;107.1 Introduction;862
118.2.1;107.1.1 Background;862
118.2.2;107.1.2 Motivation;863
118.3;107.2 Objectives and Research Questions;863
118.4;107.3 Methodology;863
118.5;107.4 Main Findings;864
118.5.1;107.4.1 Status of Virtual Learning Environments in Construction Industry;864
118.5.2;107.4.2 Advancements of Virtual Learning Environments on Robot Incorporated Work Sites;865
118.6;107.5 Discussion;866
118.7;107.6 Conclusion;866
118.8;References;867
119;108 Building Energy Modeling in Airport Architecture Design;869
119.1;Abstract;869
119.2;108.1 Introducing BIM Technologies into Architecture Curriculum;869
119.3;108.2 Environmental Design Lab Training Course;870
119.3.1;108.2.1 Program and Topics First Section;870
119.3.2;108.2.2 Industry Involvement in Architecture Education;871
119.3.3;108.2.3 Course Objectives, Training Methods and Tools;871
119.3.4;108.2.4 Assignments;873
119.3.5;108.2.5 Assessment Methods and Students Evaluation;873
119.4;108.3 Results;875
119.5;108.4 Conclusions;875
119.6;References;876
120;Author Index;877
121;Subject Index;881




