E-Book, Englisch, 393 Seiten
Neugebauer Digital Transformation
1. Auflage 2019
ISBN: 978-3-662-58134-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 393 Seiten
ISBN: 978-3-662-58134-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
With the exception of written letters and personal conversations, digital technology forms the basis of nearly every means of communication and information that we use today. It is also used to control the essential elements of economic, scientific, and public and private life: security, production, mobility, media, and healthcare. Without exaggerating it is possible to say that digital technology has become one of the foundations of our technologically oriented civilization.
The benefits of modern data technology are so impressive and the potential for future applications so enormous that we cannot fail to promote its development if we are to retain our leading role in the competitive international marketplace. In this process, security plays a vital role in each of the areas of application of digital technology - the more technological sectors are entrusted to data systems technology, the more important their reliability becomes to us.
Developing digital systems further while simultaneously ensuring that they always act and respond in the best interests of people is a central goal of the technological research and development propagated and conducted by Fraunhofer.
Prof. Dr.-Ing. Reimund Neugebauer is the tenth president of the Fraunhofer Gesellschaft. He took office on October 1, 2012 and is responsible for the board area of management policy and research.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;1Digital Information –The “Genetic Code” of Modern Technology;13
2.1;1.1 Introduction: Digitization, a powerful force for change;13
2.2;1.2 Technology’s “genetic code”;14
2.3;1.3 The dynamics of everyday digital life;15
2.4;1.4 Resilience and security;16
2.5;1.5 Fraunhofer searches for practical applications;18
3;2Digitization – Areas of Application and Research Objectives;20
3.1;2.1 Introduction;20
3.2;2.2 Data analysis and data transfer;21
3.2.1;2.2.1 The digitization of the material world;21
3.2.2;2.2.2 Intelligent data analysis and simulation for better medicine;21
3.2.3;2.2.3 Maintaining quality at smaller sizes via data compression;21
3.2.4;2.2.4 Digital radio – better radio reception for everyone;22
3.2.5;2.2.5 Transferring more data in less time:5G,edge computing,etc.;22
3.3;2.3 Work and production;23
3.3.1;2.3.1 The digitization of the workplace;23
3.3.2;2.3.2 Digital and connected manufacturing;24
3.3.3;2.3.3 Turning data into matter;24
3.3.4;2.3.4 Cognitive machines are standing by our sides;25
3.4;2.4 Security and resilience;25
3.4.1;2.4.1 Data – the elixir of the modern world;25
3.4.2;2.4.2 Industrial Data Space – retaining data sovereignty;26
3.4.3;2.4.3 Data origin authentication and counterfeit protection inthe digital world;26
3.4.4;2.4.4 Cybersecurity as the foundation for modern societies;27
3.4.5;2.4.5 Cybersecurity technology adapted to people;27
3.4.6;2.4.6 People-centered digitization;28
4;3Virtual Reality in Media and Technology;29
4.1;3.1 Introduction: Digitizing of real objects using the exampleof cultural artifacts;29
4.1.1;3.1.1 Automating the 3D digitization process with CultLab3D;31
4.1.2;3.1.2 Results, application scenarios, and future developments;35
4.2;3.2 Virtual and Augmented Reality systems optimize planning, construction and manufacturing;37
4.2.1;3.2.1 Virtual Reality;37
4.2.2;3.2.2 Augmented Reality;39
4.2.3;3.2.3 Visualization using linked 3D data schemas;43
4.2.4;3.2.4 Integration of CAD data into AR;46
4.2.5;3.2.5 Augmented Reality tracking;47
4.2.6;3.2.6 Tracking as a service;48
4.3;Sources and literature;50
5;4Video Data Processing;52
5.1;4.1 Introduction: The major role of video in the digitalworld;53
5.2;4.2 Video processing at FraunhoferHeinrich-Hertz-Institute;56
5.3;4.3 Compression methods for video data;57
5.4;4.4 Three-dimensional video objects;63
5.5;4.5 Summary and Outlook;67
5.6;Sources and literature;67
6;5Audio Codecs;72
6.1;5.1 Introduction: The dream of high fidelity;73
6.2;5.2 Hi-fi technologies from analog to digital;73
6.3;5.3 Current research focus areas;75
6.3.1;5.3.1 The ear and the brain;75
6.3.2;5.3.2 From audio channels to audio objects;77
6.3.3;5.3.3 Audio objects in practice;79
6.4;5.4 Outlook;85
6.5;Sources and literature;85
7;6Digital Radio;87
7.1;6.1 Introduction;88
7.2;6.2 Spectrum efficiency allows more broadcasts;88
7.3;6.3 Program diversity;89
7.4;6.4 Innovative services: from traffic alerts to emergencymanagement;90
7.5;6.5 Non-discriminatory access;92
7.6;6.6 Hybrid applications;92
7.7;6.7 Outlook;92
8;75G Data Transfer at Maximum Speed;94
8.1;7.1 Introduction: the generations of mobilecommunicationsfrom 2G to 5G;95
8.2;7.2 5G vision and new technological challenges;97
8.3;7.3 Technical key concepts: spectrum, technologyand architecture;101
8.4;7.4 5G research at Fraunhofer HHI;108
8.5;7.5 Outlook;112
8.6;Sources and literature;112
9;8International Data Spaces;115
9.1;8.1 Introduction: digitization of industry and the roleof data;116
9.2;8.2 International Data Spaces;118
9.2.1;8.2.1 Requirements and aims;118
9.2.2;8.2.2 International Data Space Reference Architecture Model;120
9.2.3;8.2.3 State of development;121
9.3;8.3 Case studies on the International Data Space;123
9.3.1;8.3.1 Collaborative supply chain management in the automotiveindustry;123
9.3.2;8.3.2 Transparency in steel industry supply chains;125
9.3.3;8.3.3 Data trusteeship for industrial data;126
9.3.4;8.3.4 Digital networking of manufacturing lines;127
9.3.5;8.3.5 Product lifecycle management in the business ecosystem;129
9.3.6;8.3.6 Agile networking in value chains;130
9.4;8.4 Case study assessment;131
9.5;Sources and literature;133
10;9EMOIO Research Project;135
10.1;9.1 Introduction: designing the technology of the future;137
10.2;9.2 Adaptive and assistance systems;138
10.3;9.3 Brain-computer interface and neuro-adaptivetechnology;139
10.4;9.4 EMOIO – From basic to applied brain research;142
10.4.1;9.4.1 Development of an interactive experimental paradigm for researching the affective user reactions towards assistancefunctions;142
10.4.2;9.4.2 Studying the ability to detect and discriminate user affectivereactions with EEG and fNIRS;144
10.5;9.5 Summary and outlook;146
10.5.1;9.5.1 Summary and outlook from the research within theEMOIO project;146
10.5.2;9.5.2 Outlook and applications of brain-computer interfaces;147
10.6;Sources and literature;148
11;10Fraunhofer Additive Manufacturing Alliance;151
11.1;10.1 Introduction: history of additive manufacturing;152
11.2;10.2 Additive manufacturing at Fraunhofer;153
11.3;10.3 Additive manufacturing – the revolution of productmanufacturing in the digital age;159
11.4;10.4 Mesoscopic lightweight construction using additivelymanufactured six-sided honeycombs;161
11.5;10.5 Using biomimetic structures for esthetic consumergoods;162
11.6;10.6 High-performance tools for sheet metal hot formingusing laser beam melting;164
11.7;10.7 Additive manufacturing of ceramic components;166
11.8;10.8 Printable biomaterials;168
11.9;10.9 Development and construction of a highly productive manufacturing facility for additive manufacturing oflarge-scale components made of arbitrary plastics;170
11.10;10.10 Integration of sensory-diagnostic and actuator therapeuticfunctions in implants;172
11.11;10.11 Generating three-dimensional multi-material parts;173
11.12;Sources and literature;175
12;11Future Work Lab;176
12.1;11.1 Introduction: the digitization and Industry 4.0megatrend;177
12.2;11.2 Future Work Frame – Developing the framework forsustainable work design;178
12.2.1;11.2.1 Human-technology interaction;179
12.2.2;11.2.2 Flexibility, blurred boundaries, and work-life balance;179
12.2.3;11.2.3 Competency development and qualification;180
12.3;11.3 Future Work Trends – Work design in Industry 4.0;181
12.3.1;11.3.1 Connected work systems;181
12.3.2;11.3.2 Context sensitive work systems;182
12.3.3;11.3.3 Assisting work systems;182
12.3.4;11.3.4 Intuitive work systems;183
12.4;11.4 Future Work Lab – Experiencing the industrialwork of the future;184
12.4.1;11.4.1 Experience Future Work demo world;185
12.4.2;11.4.2 Fit for the Work of the Future learning world;186
12.4.3;11.4.3 Work in Progress world of ideas;186
12.5;11.5 Future Work Cases – Design examples for theindustrialwork of the future;187
12.5.1;11.5.1 Future Work Case: assisted assembly;188
12.5.2;11.5.2 Future Work Case: human-robot cooperation withthe heavy-duty robot;189
12.6;11.6 Outlook;190
12.7;Sources and literature;191
13;12Cyber-Physical Systems;193
13.1;12.1 Introduction;194
13.2;12.2 CPSs in production;196
13.3;12.3 Transforming production systems intocyber-physical systems;198
13.3.1;12.3.1 Evolution in the production process;198
13.3.2;12.3.2 LinkedFactory – data as a raw material of the future;203
13.4;12.4 Challenges for CPS design;210
13.4.1;12.4.1 Systems engineering as the key to success;211
13.4.2;12.4.2 Performance level and practical action required;211
13.5;12.5 Summary and development perspectives;214
13.6;Sources and literature;216
14;13“Go Beyond 4.0” Lighthouse Project;218
14.1;13.1 Introduction;219
14.2;13.2 Mass production;220
14.3;13.3 Digital manufacturing techniques;221
14.3.1;13.3.1 Digital printing techniques;222
14.3.2;13.3.2 Laser-based techniques;224
14.4;13.4 Demonstrators;226
14.4.1;13.4.1 Smart Door;226
14.4.2;13.4.2 Smart Wing;228
14.4.3;13.4.3 Smart Luminaire;229
14.5;13.5 Summary and outlook;231
15;14Cognitive Systems and Robotics;233
15.1;14.1 Introduction;234
15.2;14.2 Fundamental and future technologies for cognitivesystems;234
15.2.1;14.2.1 What are artificial neural networks?;235
15.2.2;14.2.2 Future developments;238
15.3;14.3 Cognitive robotics in production and services;239
15.3.1;14.3.1 Intelligent image processing as a key technology forcost-efficient robotic applications;240
15.3.2;14.3.2 A multifaceted gentleman: The Care-O-Bot® 4 service robot;243
15.4;14.4 Off road and under water: Autonomous systems forespecially demanding environments;245
15.4.1;14.4.1 Autonomous mobile robots in unstructured terrain;245
15.4.2;14.4.2 Autonomous construction machines;246
15.4.3;14.4.8 Autonomous underwater robots;247
15.4.4;14.4.4 Summary;249
15.5;14.5 Machine learning for virtual product development;249
15.5.1;14.5.1 Researching crash behavior in the automotive industry;249
15.5.2;14.5.2 Designing materials and chemicals;252
15.6;Sources and literature;252
16;15Fraunhofer Big Data and Artificial Intelligence Alliance;254
16.1;15.1 Introduction: One alliance for many sectors;254
16.2;Sources and literature;257
16.3;15.2 Offerings for every stage of development;258
16.4;15.3 Monetizing data;259
16.5;15.4 Mining valuable data with machine learning;261
16.6;15.5 Data scientist – a new role in the age of data;262
16.7;15.6 Conclusion;263
16.8;Sources and literature;264
17;16Safety and Security;266
17.1;16.1 Introduction: Cybersecurity – The number one issuefor the digital economy;267
17.2;16.2 The (in-)security of current information technology;267
17.3;16.3 Cybersecurity: relevant for every industry;270
17.4;16.4 The growing threat;273
17.5;16.5 Cybersecurity and privacy protection in the face ofchanging technology and paradigms;273
17.6;16.6 Cybersecurity and privacy protection at every level;274
17.7;Sources and literature;282
18;17Fault-Tolerant Systems;285
18.1;17.1 Introduction;285
18.2;17.2 Challenges for fault-tolerant systems;287
18.3;17.3 Resilience as a security concept for the connectedworld;289
18.4;17.4 Applied resilience research: Designing complex connectedinfrastructures that are fault-tolerant;295
18.5;17.5 Outlook;297
18.6;Sources and literature;298
19;18Blockchain;301
19.1;18.1 Introduction;302
19.2;18.2 Functioning;303
19.3;18.3 Methods of consensus building;304
19.4;18.4 Implementations and classification;306
19.5;18.5 Applications;307
19.6;Sources and literature;309
20;19E-Health;310
20.1;19.1 Introduction;310
20.2;19.2 Integrated diagnostics and therapy;312
20.2.1;19.2.1 Digitization latecomers;312
20.2.2;19.2.2 Innovative sensors and intelligent software assistants;313
20.2.3;19.2.3 Population research;314
20.2.4;19.2.4 Multi-parameter health monitoring;315
20.2.5;19.2.5 Digitization as a catalyst for integrated diagnosis;317
20.3;19.3 AI, our hard-working “colleague”;319
20.3.1;19.3.1 Deep learning breaks records;319
20.3.2;19.3.2 Pattern recognition as a powerful tool in medicine;320
20.3.3;19.3.3 Radiomics: a potential forerunner;321
20.3.4;19.3.4 Intuition and trust put to the test;323
20.4;19.4 Changing distribution of roles;324
20.4.1;19.4.1 Integrated diagnostic teams;324
20.4.2;19.4.2 The empowered patient;325
20.5;19.5 Potential impacts on the healthcare economy;326
20.5.1;19.5.1 Cost savings via objectified therapeutic decision-making;326
20.5.2;19.5.2 Increasing efficiency via early detection anddata management;327
20.6;19.6 Structural changes in the market;328
20.6.1;19.6.1 Disruptive innovation and the battle about standards;328
20.6.2;19.6.2 New competitors in the healthcare market;328
20.7;19.7 Outlook;329
20.8;Sources and literature;331
21;20Smart Energy;334
21.1;20.1 Introduction: The digital transformation megatrend;334
21.2;20.2 Digital transformation in the energy sector;336
21.3;20.3 The energy transition requires sector coupling and ICT;338
21.4;20.4 The cellular organizational principle;341
21.5;20.5 Challenges for energy ICT;344
21.6;20.6 The challenge of resilience and comprehensivesecurity;346
21.7;20.7 The energy transition as a transformation process;349
21.8;Sources and literature;349
22;21Advanced Software Engineering;351
22.1;21.1 Introduction;351
22.2;21.2 Software and software engineering;353
22.3;21.3 Selected characteristics of software;354
22.4;21.4 Model-based methods and tools;356
22.5;21.5 Risk assessment and automated security tests;357
22.6;21.6 Software mapping and visualization;359
22.7;21.7 Model-based testing;360
22.8;21.8 Test automation;362
22.9;21.9 Additional approaches;364
22.10;21.10 Professional development offerings;364
22.11;21.11 Outlook;365
22.12;Sources and literature;366
23;22Automated Driving;368
23.1;22.1 Introduction;369
23.2;22.2 Autonomous driving in the automobile sector;370
23.2.1;22.2.1 State of the art;370
23.2.2;22.2.2 Autonomous driving in complex traffic situations;372
23.2.3;22.2.3 Cooperative driving maneuvers;375
23.2.4;22.2.4 Low-latency broadband communication;376
23.2.5;22.2.5 Roadside safety systems;378
23.2.6;22.2.6 Digital networking and functional reliability of driverlessvehicles;380
23.2.7;22.2.7 Fast-charging capabilities and increasing ranges forautonomous electric vehicles;382
23.2.8;22.2.8 Vehicle design, modular vehicle construction, and scalablefunctionality;383
23.3;22.3 Autonomous transportation systems in logistics;385
23.4;22.4 Driverless work machines in agricultural technology;386
23.5;22.5 Autonomous rail vehicle engineering;388
23.6;22.6 Unmanned ships and underwater vehicles;389
23.7;Sources and literature;391




