E-Book, Englisch, 604 Seiten
Nobel Physicochemical and Environmental Plant Physiology
4. Auflage 2009
ISBN: 978-0-08-092089-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 604 Seiten
ISBN: 978-0-08-092089-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Physicochemical and Environmental Plant Physiology, Fourth Edition, is the updated version of an established and successful reference for plant scientists. The author has taken into consideration extensive reviews performed by colleagues and students who have touted this book as the ultimate reference for research and learning. The original structure and philosophy of the book continue in this new edition, providing a genuine synthesis of modern physicochemical and physiological thinking, while entirely updating the detailed content. This version contains more than 40% new coverage; five brand new equations and four new tables, with updates to 24 equations and six tables; and 30 new figures have been added with more than three-quarters of figures and legends improved. Key concepts in plant physiology are developed with the use of chemistry, physics, and mathematics fundamentals. The book is organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested. * More than 40% new coverage
* Incorporates student-recommended changes from the previous edition
* Five brand new equations and four new tables, with updates to 24 equations and six tables
* 30 new figures added with more than three-quarters of figures and legends improved
* Organized so that a student has easy access to locate any biophysical phenomenon in which he or she is interested
* Per-chapter key equation tables
* Problems with solutions presented in the back of the book
* Appendices with conversion factors, constants/coefficients, abbreviations and symbols
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Physicochemical and Environmental Plant Physiology;4
3;Copyright Page;5
4;Contents;6
5;Preface;14
6;Symbols and Abbreviations;16
7;Chapter 1. Cells and Diffusion;25
7.1;1.1. Cell Structure;25
7.1.1;1.1A. Generalized Plant Cell;25
7.1.2;1.1B. Leaf Anatomy;27
7.1.3;1.1C. Vascular Tissue;29
7.1.4;1.1D. Root Anatomy;31
7.2;1.2. Diffusion;33
7.2.1;1.2A. Fick’s First Law;34
7.2.2;1.2B. Continuity Equation and Fick’s Second Law;36
7.2.3;1.2C. Time–Distance Relation for Diffusion;38
7.2.4;1.2D. Diffusion in Air;41
7.3;1.3. Membrane Structure;43
7.3.1;1.3A. Membrane Models;43
7.3.2;1.3B. Organelle Membranes;45
7.4;1.4. Membrane Permeability;47
7.4.1;1.4A. Concentration Difference Across a Membrane;48
7.4.2;1.4B. Permeability Coeffi cient;50
7.4.3;1.4C. Diffusion and Cellular Concentration;51
7.5;1.5. Cell Walls;53
7.5.1;1.5A. Chemistry and Morphology;55
7.5.2;1.5B. Diffusion Across Cell Walls;56
7.5.3;1.5C. Stress–Strain Relations of Cell Walls;59
7.5.4;1.5D. Elastic Modulus, Viscoelasticity;61
7.6;1.6. Problems;62
7.7;1.7. References and Further Reading;64
8;Chapter 2. Water;67
8.1;2.1. Physical Properties;68
8.1.1;2.1A. Hydrogen Bonding—Thermal Relations;69
8.1.2;2.1B. Surface Tension;71
8.1.3;2.1C. Capillary Rise;72
8.1.4;2.1D. Capillary Rise in the Xylem;75
8.1.5;2.1E. Tensile Strength, Viscosity;76
8.1.6;2.1F. Electrical Properties;77
8.2;2.2. Chemical Potential;78
8.2.1;2.2A. Free Energy and Chemical Potential;78
8.2.2;2.2B. Analysis of Chemical Potential;82
8.2.3;2.2C. Standard State;85
8.2.4;2.2D. Hydrostatic Pressure;86
8.2.5;2.2E. Water Activity and Osmotic Pressure;87
8.2.6;2.2F. Van’t Hoff Relation;88
8.2.7;2.2G. Matric Pressure;91
8.2.8;2.2H. Water Potential;93
8.3;2.3. Central Vacuole and Chloroplasts;94
8.3.1;2.3A. Water Relations of the Central Vacuole;95
8.3.2;2.3B. Boyle–Van’t Hoff Relation;96
8.3.3;2.3C. Osmotic Responses of Chloroplasts;98
8.4;2.4. Water Potential and Plant Cells;100
8.4.1;2.4A. Incipient Plasmolysis;100
8.4.2;2.4B. Höfl er Diagram and Pressure–Volume Curve;103
8.4.3;2.4C. Chemical Potential and Water Potential of Water Vapor;106
8.4.4;2.4D. Plant–Air Interface;109
8.4.5;2.4E. Pressure in the Cell Wall Water;110
8.4.6;2.4F. Water Flux;113
8.4.7;2.4G. Cell Growth;115
8.4.8;2.4H. Kinetics of Volume Changes;117
8.5;2.5. Problems;118
8.6;2.6. References and Further Reading;120
9;Chapter 3. Solutes;123
9.1;3.1. Chemical Potential of Ions;124
9.1.1;3.1A. Electrical Potential;125
9.1.2;3.1B. Electroneutrality and Membrane Capacitance;126
9.1.3;3.1C. Activity Coeffi cients of Ions;128
9.1.4;3.1D. Nernst Potential;130
9.1.5;3.1E. Example of ENK;132
9.2;3.2. Fluxes and Diffusion Potentials;134
9.2.1;3.2A. Flux and Mobility;135
9.2.2;3.2B. Diffusion Potential in a Solution;138
9.2.3;3.2C. Membrane Fluxes;141
9.2.4;3.2D. Membrane Diffusion Potential—Goldman Equation;144
9.2.5;3.2E. Application of Goldman Equation;147
9.2.6;3.2F. Donnan Potential;149
9.3;3.3. Characteristics of Crossing Membranes;151
9.3.1;3.3A. Electrogenicity;152
9.3.2;3.3B. Boltzmann Energy Distribution and Q10, a Temperature Coeffi cient;153
9.3.3;3.3C. Activation Energy and Arrhenius Plots;157
9.3.4;3.3D. Ussing–Teorell Equation;159
9.3.5;3.3E. Example of Active Transport;162
9.3.6;3.3F. Energy for Active Transport;164
9.3.7;3.3G. Speculation on Active Transport;165
9.4;3.4. Mechanisms for Crossing Membranes;166
9.4.1;3.4A. Carriers, Porters, Channels, and Pumps;167
9.4.2;3.4B. Michaelis–Menten Formalism;171
9.4.3;3.4C. Facilitated Diffusion;173
9.5;3.5. Principles of Irreversible Thermodynamics;175
9.5.1;3.5A. Fluxes, Forces, and Onsager Coeffi cients;176
9.5.2;3.5B. Water and Solute Flow;178
9.5.3;3.5C. Flux Densities, LP , and s;180
9.5.4;3.5D. Values for Refl ection Coeffi cients;183
9.6;3.6. Solute Movement Across Membranes;185
9.6.1;3.6A. Infl uence of Refl ection Coeffi cients on Incipient Plasmolysis;187
9.6.2;3.6B. Extension of the Boyle–Van’t Hoff Relation;189
9.6.3;3.6C. Refl ection Coeffi cients of Chloroplasts;191
9.6.4;3.6D. Solute Flux Density;191
9.7;3.7. Problems;192
9.8;3.8. References and Further Reading;195
10;Chapter 4. Light;199
10.1;4.1. Wavelength and Energy;201
10.1.1;4.1A. Light Waves;201
10.1.2;4.1B. Energy of Light;204
10.1.3;4.1C. Illumination, Photon Flux Density, and Irradiance;207
10.1.4;4.1D. Sunlight;210
10.1.5;4.1E. Planck’s and Wien’s Formulae;212
10.2;4.2. Absorption of Light by Molecules;213
10.2.1;4.2A. Role of Electrons in Absorption Event;214
10.2.2;4.2B. Electron Spin and State Multiplicity;216
10.2.3;4.2C. Molecular Orbitals;217
10.2.4;4.2D. Photoisomerization;220
10.2.5;4.2E. Light Absorption by Chlorophyll;221
10.3;4.3. Deexcitation;223
10.3.1;4.3A. Fluorescence, Radiationless Transition, and Phosphorescence;224
10.3.2;4.3B. Competing Pathways for Deexcitation;225
10.3.3;4.3C. Lifetimes;228
10.3.4;4.3D. Quantum Yields;230
10.4;4.4. Absorption Spectra and Action Spectra;230
10.4.1;4.4A. Vibrational Sublevels;232
10.4.2;4.4B. The Franck–Condon Principle;233
10.4.3;4.4C. Absorption Bands, Absorption Coeffi cients, and Beer’s Law;236
10.4.4;4.4D. Application of Beer’s Law;238
10.4.5;4.4E. Conjugation;239
10.4.6;4.4F. Action Spectra;241
10.4.7;4.4G. Absorption and Action Spectra of Phytochrome;242
10.5;4.5. Problems;245
10.6;4.6. References and Further Reading;247
11;Chapter 5. Photochemistry of Photosynthesis;251
11.1;5.1. Chlorophyll—Chemistry and Spectra;254
11.1.1;5.1A. Types and Structures;254
11.1.2;5.1B. Absorption and Fluorescence Emission Spectra;255
11.1.3;5.1C. Absorption in Vivo—Polarized Light;258
11.2;5.2. Other Photosynthetic Pigments;260
11.2.1;5.2A. Carotenoids;260
11.2.2;5.2B. Phycobilins;264
11.2.3;5.2C. General Comments;266
11.3;5.3. Excitation Transfers Among Photosynthetic Pigments;267
11.3.1;5.3A. Pigments and the Photochemical Reaction;268
11.3.2;5.3B. Resonance Transfer of Excitation;269
11.3.3;5.3C. Specifi c Transfers of Excitation;270
11.3.4;5.3D. Excitation Trapping;272
11.4;5.4. Groupings of Photosynthetic Pigments;275
11.4.1;5.4A. Photon Processing;275
11.4.2;5.4B. Excitation Processing;275
11.4.3;5.4C. Photosynthetic Action Spectra and Enhancement Effects;278
11.4.4;5.4D. Two Photosystems Plus Light-Harvesting Antennae;278
11.5;5.5. Electron Flow;282
11.5.1;5.5A. Electron Flow Model;282
11.5.2;5.5B. Components of the Electron Transfer Pathway;284
11.5.3;5.5C. Types of Electron Flow;290
11.5.4;5.5D. Assessing Photochemistry using Fluorescence;291
11.5.5;5.5E. Photophosphorylation;293
11.5.6;5.5F. Vectorial Aspects of Electron Flow;293
11.6;5.6. Problems;295
11.7;5.7. References and Further Reading;296
12;Chapter 6. Bioenergetics;299
12.1;6.1. Gibbs Free Energy;300
12.1.1;6.1A. Chemical Reactions and Equilibrium Constants;302
12.1.2;6.1B. Interconversion of Chemical and Electrical Energy;305
12.1.3;6.1C. Redox Potentials;307
12.2;6.2. Biological Energy Currencies;308
12.2.1;6.2A. ATP—Structure and Reactions;309
12.2.2;6.2B. Gibbs Free Energy Change for ATP Formation;313
12.2.3;6.2C. NADP+–NADPH Redox Couple;315
12.3;6.3. Chloroplast Bioenergetics;317
12.3.1;6.3A. Redox Couples;317
12.3.2;6.3B. H+ Chemical Potential Differences Caused by Electron Flow;321
12.3.3;6.3C. Evidence for Chemiosmotic Hypothesis;322
12.3.4;6.3D. Coupling of Flows;324
12.4;6.4. Mitochondrial Bioenergetics;325
12.4.1;6.4A. Electron Flow Components—Redox Potentials;326
12.4.2;6.4B. Oxidative Phosphorylation;329
12.5;6.5. Energy Flow in the Biosphere;332
12.5.1;6.5A. Incident Light—Stefan–Boltzmann Law;333
12.5.2;6.5B. Absorbed Light and Photosynthetic Effi ciency;335
12.5.3;6.5C. Food Chains and Material Cycles;336
12.6;6.6. Problems;337
12.7;6.7. References and Further Reading;339
13;Chapter 7. Temperature and Energy Budgets;341
13.1;7.1. Energy Budget—Radiation;342
13.1.1;7.1A. Solar Irradiation;344
13.1.2;7.1B. Absorbed Infrared Irradiation;348
13.1.3;7.1C. Emitted Infrared Radiation;349
13.1.4;7.1D. Values for a, aIR, and eIR;350
13.1.5;7.1E. Net Radiation;352
13.1.6;7.1F. Examples for Radiation Terms;352
13.2;7.2. Heat Conduction and Convection;355
13.2.1;7.2A. Wind;356
13.2.2;7.2B. Air Boundary Layers;358
13.2.3;7.2C. Boundary Layers for Bluff Bodies;361
13.2.4;7.2D. Heat Conduction/Convection Equations;362
13.2.5;7.2E. Dimensionless Numbers;363
13.2.6;7.2F. Examples of Heat Conduction/Convection;367
13.3;7.3. Latent Heat—Transpiration;368
13.3.1;7.3A. Heat Flux Density Accompanying Transpiration;368
13.3.2;7.3B. Heat Flux Density for Dew or Frost Formation;369
13.3.3;7.3C. Examples of Frost and Dew Formation;370
13.4;7.4. Further Examples of Energy Budgets;372
13.4.1;7.4A. Leaf Shape and Orientation;372
13.4.2;7.4B. Shaded Leaves within Plant Communities;374
13.4.3;7.4C. Heat Storage;374
13.4.4;7.4D. Time Constants;376
13.5;7.5. Soil;377
13.5.1;7.5A. Thermal Properties;378
13.5.2;7.5B. Soil Energy Balance;379
13.5.3;7.5C. Variations in Soil Temperature;380
13.6;7.6. Problems;382
13.7;7.7. References and Further Reading;384
14;Chapter 8. Leaves and Fluxes;387
14.1;8.1. Resistances and Conductances—Transpiration;388
14.1.1;8.1A. Boundary Layer Adjacent to Leaf;390
14.1.2;8.1B. Stomata;393
14.1.3;8.1C. Stomatal Conductance and Resistance;395
14.1.4;8.1D. Cuticle;398
14.1.5;8.1E. Intercellular Air Spaces;398
14.1.6;8.1F. Fick’s First Law and Conductances;399
14.2;8.2. Water Vapor Fluxes Accompanying Transpiration;402
14.2.1;8.2A. Conductance and Resistance Network;402
14.2.2;8.2B. Values of Conductances;405
14.2.3;8.2C. Effective Lengths and Resistance;406
14.2.4;8.2D. Water Vapor Concentrations, Mole Fractions and Partial Pressures for Leaves;407
14.2.5;8.2E. Examples of Water Vapor Levels in a Leaf;409
14.2.6;8.2F. Water Vapor Fluxes;411
14.2.7;8.2G. Control of Transpiration;412
14.3;8.3. CO2 Conductances and Resistances;414
14.3.1;8.3A. Resistance and Conductance Network;414
14.3.2;8.3B. Mesophyll Area;416
14.3.3;8.3C. Resistance Formulation for Cell Components;419
14.3.4;8.3D. Partition Coeffi cient for CO2;420
14.3.5;8.3E. Cell Wall Resistance;421
14.3.6;8.3F. Plasma Membrane Resistance;422
14.3.7;8.3G. Cytosol Resistance;423
14.3.8;8.3H. Mesophyll Resistance;424
14.3.9;8.3I. Chloroplast Resistance;424
14.4;8.4. CO2 Fluxes Accompanying Photosynthesis;425
14.4.1;8.4A. Photosynthesis;425
14.4.2;8.4B. Respiration and Photorespiration;428
14.4.3;8.4C. Comprehensive CO2 Resistance Network;432
14.4.4;8.4D. Compensation Points;434
14.4.5;8.4E. Fluxes of CO2;438
14.4.6;8.4F. CO2 Conductances;440
14.4.7;8.4G. Photosynthetic Rates;442
14.4.8;8.4H. Environmental Productivity Index;442
14.5;8.5. Water-Use Effi ciency;444
14.5.1;8.5A. Values for WUE;445
14.5.2;8.5B. Elevational Effects on WUE;447
14.5.3;8.5C. Stomatal Control of WUE;448
14.5.4;8.5D. C3 versus C4 Plants;451
14.6;8.6. Problems;454
14.7;8.7. References and Further Reading;456
15;Chapter 9. Plants and Fluxes;461
15.1;9.1. Gas Fluxes above Plant Canopy;462
15.1.1;9.1A. Wind Speed Profi les;463
15.1.2;9.1B. Flux Densities;464
15.1.3;9.1C. Eddy Diffusion Coeffi cients;465
15.1.4;9.1D. Resistance of Air above Canopy;467
15.1.5;9.1E. Transpiration and Photosynthesis;467
15.1.6;9.1F. Values for Fluxes and Concentrations;468
15.1.7;9.1G. Condensation;470
15.2;9.2. Gas Fluxes within Plant Communities;471
15.2.1;9.2A. Eddy Diffusion Coeffi cient and Resistance;471
15.2.2;9.2B. Water Vapor;473
15.2.3;9.2C. Attenuation of the Photosynthetic Photon Flux;475
15.2.4;9.2D. Values for Foliar Absorption Coeffi cient;476
15.2.5;9.2E. Light Compensation Point;477
15.2.6;9.2F. CO2 Concentrations and Fluxes;478
15.2.7;9.2G. CO2 at Night;480
15.3;9.3. Water Movement in Soil;481
15.3.1;9.3A. Soil Water Potential;482
15.3.2;9.3B. Darcy’s Law;484
15.3.3;9.3C. Soil Hydraulic Conductivity Coeffi cient;485
15.3.4;9.3D. Fluxes for Cylindrical Symmetry;487
15.3.5;9.3E. Fluxes for Spherical Symmetry;489
15.4;9.4. Water Movement in the Xylem and the Phloem;491
15.4.1;9.4A. Root Tissues;491
15.4.2;9.4B. Xylem;492
15.4.3;9.4C. Poiseuille’s Law;493
15.4.4;9.4D. Applications of Poiseuille’s Law;494
15.4.5;9.4E. Phloem;498
15.4.6;9.4F. Phloem Contents and Speed of Movement;500
15.4.7;9.4G. Mechanism of Phloem Flow;501
15.4.8;9.4H. Values for Components of the Phloem Water Potential;502
15.5;9.5. Soil–Plant–Atmosphere Continuum;505
15.5.1;9.5A. Values for Water Potential Components;505
15.5.2;9.5B. Resistances and Areas;507
15.5.3;9.5C. Values for Resistances and Resistivities;509
15.5.4;9.5D. Root–Soil Air Gap and Hydraulic Conductances;512
15.5.5;9.5E. Capacitance and Time Constants;514
15.5.6;9.5F. Daily Changes;517
15.5.7;9.5G. Global Climate Change;519
15.6;9.6. Problems;522
15.7;9.7. References and Further Reading;525
16;Solutions To Problems;529
17;Appendix I. Numerical Values of Constants and Coeffi cients;567
18;Appendix II. Conversion Factors and Defi nitions;575
19;Appendix III. Mathematical Relations;579
19.1;III.A. Prefixes (for units of measure);579
19.2;III.B. Areas and Volumes;579
19.3;III.C. Logarithms;579
19.4;III.D. Quadratic Equation;580
19.5;III.E. Trignometric Functions;580
19.6;III.F. Differential Equations;580
20;Appendix IV. Gibbs Free Energy and Chemical Potential;583
20.1;IV.A. Entropy and Equilibrium;583
20.2;IV.B. Gibbs Free Energy;585
20.3;IV.C. Chemical Potential;587
20.4;IV.D. Pressure Dependence of µj;587
20.5;IV.E. Concentration Dependence of µj;590
21;Index;593