E-Book, Englisch, Band 124, 348 Seiten
Öchsner / Altenbach Engineering Design Applications III
1. Auflage 2020
ISBN: 978-3-030-39062-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Structures, Materials and Processes
E-Book, Englisch, Band 124, 348 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-3-030-39062-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides an update on recent advances in various areas of modern engineering design, such as mechanical, materials, computer, and process engineering, which provide the foundation for the development of improved structures, materials, and processes. The modern design cycle is characterized by the interaction of different disciplines and a strong shift toward computer-based approaches involving only a small number of experiments for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also connected to environmental demands. In the transportation industry (e.g. automotive or aerospace), where there is a demand for greater fuel efficiency, one solution is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3; Geometrical Characterization of a Lumbar Spine;11
3.1;1 Introduction;12
3.2;2 Statement of the Problem;13
3.3;3 Materials and Methods;14
3.4;4 Results;18
3.5;5 Conclusions;18
3.6;References;21
4; Antigravity Device for Intravertebral Rehabilitation;22
4.1;1 Introduction;22
4.2;2 Methodology;23
4.3;3 Development;23
4.3.1;3.1 Numerical Analysis;25
4.3.2;3.2 Engine Selection;26
4.3.3;3.3 Band and Pulley Selection;27
4.3.4;3.4 Programming of the Rehabilitation Sequence;28
4.4;4 Conclusions;29
4.5;References;29
5; Simplified Test Bench Used to Reproduce Child Facial Damage During a Frontal Collision;31
5.1;1 Introduction;31
5.2;2 Prototype Design;32
5.3;3 Kinematic Analysis;34
5.4;4 Experimental Tests;35
5.5;5 Results;35
5.6;6 Conclusion;36
5.7;References;36
6; Scientific Visualization as a Tool for Signal Processing in EEG Interpretation: Car Driver Sleeping State Detection for Advanced Cars Control Systems;38
6.1;1 Introduction;38
6.2;2 Scientific Visualization;39
6.3;3 Neurosicence Background and Signal Processing Approach to EEG Analysis;40
6.4;4 Proposal;42
6.5;5 Results;43
6.6;6 Conclusions;46
6.7;References;50
7; Determination, Validation, and Dynamic Analysis of an Off-Road Chassis;52
7.1;1 Introduction;52
7.2;2 Methodology;56
7.2.1;2.1 Simulation;57
7.2.2;2.2 Validation;58
7.2.3;2.3 Dynamic Analysis;60
7.3;3 Results and Discussions;62
7.3.1;3.1 Simulations;62
7.3.2;3.2 Validation;62
7.3.3;3.3 Dynamic Analysis;64
7.4;4 Conclusions;66
7.5;References;67
8; Experimental Investigation of the Dynamics of a Ropeway Passing Over a Support;68
8.1;1 Introduction;68
8.2;2 Stationary Vehicle: Oscillations and Damping;69
8.3;3 Measurement of the Velocity and the Deviation Angle of the Moving Vehicle;70
8.3.1;3.1 Velocity of the Hauling Cable;70
8.3.2;3.2 Deviation Angles;71
8.4;4 Conclusion;74
8.5;References;76
9; Environmental Fatigue Analysis of the Feedwater Piping System of a BWR-5;77
9.1;1 Introduction;78
9.2;2 Statement of the Problem;79
9.3;3 Finite Element Model;79
9.4;4 Transient Loading Cases;79
9.5;5 Results;81
9.6;6 Evaluation of the Environmental Cumulative Usage Factor;83
9.7;7 Conclusions;84
9.8;References;85
10; Structural Vibrations in a Building of a Nuclear Power Plant Caused by an Underground Blasting;87
10.1;1 Introduction;88
10.2;2 Statement of the Problem;89
10.3;3 Methodology;90
10.4;4 Structural Modelling;91
10.5;5 Results;92
10.6;6 Conclusion;95
10.7;References;96
11; Analysis of an Aircraft Impact on a Dry Storage Cask of Spent Nuclear Fuel;97
11.1;1 Introduction;98
11.2;2 Dynamic Nonlinear Analysis;100
11.3;3 Explicit Dynamics;100
11.4;4 Methodology;101
11.4.1;4.1 Structural Modelling with CATIA® (Dassault Systems);101
11.4.2;4.2 Domain Discretization;103
11.4.3;4.3 Boundary Conditions;103
11.4.4;4.4 Results;103
11.4.5;4.5 Conclusion;107
11.5;References;107
12; Review of Electromagnetic Compatibility on Digital Systems of Nuclear Power Plants;109
12.1;1 Introduction;110
12.2;2 Human–Machine Interface in Nuclear Power Plant;112
12.3;3 Upgrade of the I&C Systems in Nuclear Power Plants;115
12.4;4 Electromagnetic Compatibility;116
12.5;5 Conclusion;117
12.6;References;118
13; Effect of Beam Rigidity on the Lateral Stiffness of a One-Storey Frame;120
13.1;1 Introduction;120
13.2;2 Analysis of a One-Storey One-Bay Frame with an Infinitely Rigid Beam;121
13.2.1;2.1 Two Fixed–Fixed Columns with an Infinitely Rigid Beam;122
13.2.2;2.2 A Hinged-Fixed Column with a Fixed–Fixed Column with an Infinitely Rigid Beam;122
13.2.3;2.3 Two Hinged-Fixed Columns with an Infinitely Rigid Beam;123
13.3;3 Analysis of a One-Storey One-Bay Frame with a Flexible Beam;123
13.3.1;3.1 Analysis of a Frame in the Case Where the Columns Are Fixed at Their Bases;123
13.3.2;3.2 Analysis of a Frame in the Case of One Column Base Is Hinged and the Second Is Fixed;128
13.3.3;3.3 Analysis of a Frame in the Case Where the Columns Are Hinged at Their Bases;129
13.4;4 Conclusion;131
13.5;References;131
14; Fundamental Transverse Vibration Circular Frequency of a Cantilever Beam with an Intermediate Elastic Support;132
14.1;1 Introduction;132
14.2;2 Spring Located at the Right Beam End;133
14.3;3 Spring Located at a Variable Abscissa a;135
14.4;4 Conclusion;136
14.5;References;136
15; Axial Fundamental Vibration Frequency of a Tapered Rod with a Linear Cross-Sectional Area Variation;138
15.1;1 Introduction;138
15.2;2 Analysis of a Tapered Rod with a Linear Cross-Sectional Area Variation;139
15.3;3 Vibration of Uniform Rod;141
15.3.1;3.1 Vibration of Uniform Rod Using the Rayleigh Method;141
15.3.2;3.2 Axial Vibration of a Uniform Rod Using the FEM Analysis;143
15.4;4 Fundamental Vibration Angular Frequency of a Tapered Rod with a Linear Cross-Sectional Area Variation;145
15.4.1;4.1 Analysis of a Linear Tapered Rod Fixed at Its Large Base;145
15.4.2;4.2 Analysis of a Linear Tapered Rod Fixed at Its Small Base;147
15.4.3;4.3 Variations of ?1,RCT.(?.L2/E)1/2 of a Tapered Rod Fixed at Its Large Base;151
15.4.4;4.4 Variations of ?1,RCT.(?.L2/E)1/2 of a Tapered Rod Fixed at Its Small Base;152
15.5;5 Variations of ?1 of a Tapered Rod Using the FEM;152
15.5.1;5.1 Case Where the Large Base Is Fixed;152
15.5.2;5.2 Case Where the Small Base Is Fixed;154
15.6;6 Conclusion;154
15.7;References;155
16; Vibration of an SDOF Representing a Rigid Beam Supported by Two Unequal Columns with One Mounted on a Flexible Base;157
16.1;1 Introduction;157
16.2;2 Vibration Period for Extreme Values of Kr;159
16.2.1;2.1 Right Column Pinned-Fixed;159
16.2.2;2.2 Right Column Fixed-Fixed;161
16.3;3 Effect of a Torsion Spring on the Vibration Period;161
16.3.1;3.1 Right Column Pinned-Fixed;162
16.3.2;3.2 Right Column Fixed-Fixed;162
16.4;4 Conclusion;163
16.5;References;164
17; Vibration Analysis of a Uniform Beam Fixed at One End and Restrained Against Translation and Rotation at the Second One;165
17.1;1 Introduction;165
17.2;2 Beam Modeling;166
17.2.1;2.1 Elementary Stiffness Matrix;167
17.2.2;2.2 Elementary Mass Matrix;167
17.3;3 Analysis of the Beam Vibration for Extreme Values of KT and Kr;167
17.3.1;3.1 Beam Vibration Analysis in the Case of KT* = 0;169
17.3.2;3.2 Beam Vibration Analysis in the Case of KT* = infty;170
17.3.3;3.3 Beam Vibration Analysis in the Case Where Kr* = 0 or Kr* =infty;171
17.4;4 Effect of KT* and Kr* on the Beam Angular Vibration Frequency;172
17.5;5 Conclusion;173
17.6;References;173
18; Fundamental Vibration Periods of Continuous Beams with Two Unequal Spans;174
18.1;1 Introduction;174
18.2;2 Beam Modeling;175
18.3;3 Analysis of a Two-Span Beam in the Case of a Fixed First End;176
18.3.1;3.1 Second End Fixed;176
18.3.2;3.2 Second End Pinned;177
18.3.3;3.3 Second End Guided;178
18.3.4;3.4 Second End Free;179
18.4;4 Analysis of a Two-Span Beam in the Case of a Pinned First End;180
18.4.1;4.1 Second End Pinned;180
18.4.2;4.2 Second End Guided;181
18.5;5 Two Ends Guided;183
18.6;6 Conclusion;184
18.7;References;184
19; Transverse Displacements of Transversely Cracked Beams with a Linear Variation of Width Due to Axial Tensile Forces;185
19.1;1 Introduction;185
19.2;2 Problem Description and Preliminary Studies;186
19.3;3 Mathematical Model Formulation and Derivation of New Rotational Spring Stiffness;187
19.3.1;3.1 Formal Approach;187
19.3.2;3.2 Introduction of “Internal” Bending Moment MN;188
19.4;4 Verifying the Obtained Definition Through Testing of Differential Equations Solutions;192
19.5;5 Beam Finite Element Solution;194
19.5.1;5.1 Derivation of Stiffness Matrix’ Coefficients;194
19.5.2;5.2 Derivation of the Load Vector;197
19.6;6 Numerical Testing;198
19.6.1;6.1 Simply Supported Beam;198
19.6.2;6.2 Cantilever;200
19.6.3;6.3 Propped Cantilever;202
19.6.4;6.4 Discussion of the Results;203
19.7;7 Conclusions;204
19.8;References;204
20; Mechanical Properties and Formability Evaluation of AA5182-Polypropylene Sandwich Panels for Big Data Accumulation;206
20.1;1 Introduction;206
20.2;2 Experimental Methods;207
20.2.1;2.1 Fabrication of Sandwich Panels [1];207
20.2.2;2.2 Mechanical Properties Evaluation [1];207
20.3;3 Results and Discussion;208
20.3.1;3.1 Evaluation Results of Mechanical Properties;208
20.3.2;3.2 Results of Bend Test;209
20.3.3;3.3 Results of Stretching Simulation;212
20.4;4 Conclusions;214
20.5;References;214
21; Effects of Process Parameters on the Machining Process in Die-Sinking EDM of Alloyed Tool Steel;215
21.1;1 Introduction;216
21.2;2 Experimental Procedure;217
21.2.1;2.1 Experimental Materials;217
21.2.2;2.2 Performance Measurements;221
21.3;3 Results and Discussion;222
21.3.1;3.1 Effect of Different Factors on the Material Removal Rate (MRR);222
21.3.2;3.2 Effect of Different Factors on the Electrode Wear Ratio (EW%);225
21.3.3;3.3 Effect of Different Factors on the Surface Roughness (SR);228
21.3.4;3.4 Effect of Electrode Material and Polarity on the Performance Measurements;230
21.4;4 Conclusions;231
21.5;References;232
22; Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability;234
22.1;1 Introduction;234
22.2;2 Carbon Fiber Reinforced Polymer (CFRP) Composite Materials;236
22.3;3 Production of CFRP Composite Materials;238
22.4;4 Utilization Areas of CFRP Composite Materials;240
22.5;5 Machinability of CFRP Composite Materials;244
22.5.1;5.1 Milling of CFRP Composites;245
22.5.2;5.2 Drilling of CFRP Composites;245
22.6;6 Conclusions;246
22.7;References;246
23; Numerical Investigation on the Influence of Doping on Tensile Properties of Carbon Nanotubes;253
23.1;1 General Aspects About CNTs;254
23.2;2 Literature Review;255
23.3;3 Geometry and Atomic Structure of Perfect Carbon Nanotube;258
23.4;4 Geometry and Atomic Structure of Doped Carbon Nanotubes;260
23.5;5 Elastic Moduli of the Beam Element;262
23.6;6 Elastic Moduli of CNTs;264
23.7;7 Results and Discussion;265
23.7.1;7.1 Perfect CNTs;265
23.7.2;7.2 Doped Models;266
23.8;8 Conclusion;270
23.9;References;271
24; Application of Mechanical Tests to Determine the Properties of Foam Rubber for Mill Design;275
24.1;1 Introduction;275
24.2;2 Development;276
24.3;3 Tension and Flexion Test;277
24.4;4 Results;278
24.5;5 Discussion;279
24.6;6 Conclusions;280
24.7;References;282
25; Comparison of the Stress-Strain Relationship of Right and Pseudo-developable Helicoids;283
25.1;1 Introduction;283
25.2;2 Materials and Methods;286
25.3;3 Results and Descriptions;286
25.4;4 Conclusion;291
25.5;References;292
26; ATR-FTIR Analysis of Melamine Resin, Phenol-Formaldehyde Resin and Acrylonitrile-Butadiene Rubber Blend Modified by High-Energy Electron Beam Radiation;293
26.1;1 Introduction;294
26.1.1;1.1 Electron Beam Modification of Polymers;294
26.1.2;1.2 Fourier-Transform Infrared Spectroscopy;295
26.1.3;1.3 Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy;296
26.2;2 Materials and Methods;298
26.2.1;2.1 Samples Preparation;298
26.2.2;2.2 Radiation Treatment;298
26.2.3;2.3 Infrared Spectroscopic Analysis;299
26.3;3 Results and Discussion;299
26.4;4 Conclusions;303
26.5;References;304
27; Introduction of Two Analytical Theories as Applied to Developable Surfaces;306
27.1;1 Introduction;306
27.2;2 Mathematical and Technical Analytical Theories;307
27.3;3 Comparison of Two Analytical Theories;313
27.4;4 Application to Developable Surfaces;314
27.5;5 Results and Discussion;316
27.6;6 Conclusion;317
27.7;References;317
28; A Study of the Effect of the Quinacridone Pigment Content and Storage Time on the Process of Crystallization of Pre-oriented Polypropylene/Quinacridone Fibres;318
28.1;1 Introduction;319
28.2;2 Materials and Methods;320
28.2.1;2.1 Materials Used;320
28.2.2;2.2 Pigmented Fibre Preparation;321
28.2.3;2.3 Methods Used;321
28.3;3 Results and Discussion;322
28.3.1;3.1 DSC Analysis Results;322
28.3.2;3.2 Analysis of Experimental Data;326
28.3.3;3.3 Modelling Experimental Data;327
28.4;4 Conclusions;331
28.5;References;331
29; Adjusting the Plastic Zone Development in Steel Plate Shear Walls—A Finite Element Study;334
29.1;1 Introduction;335
29.2;2 Methodology;336
29.2.1;2.1 Finite Element Prototype;336
29.2.2;2.2 Case Studies;337
29.2.3;2.3 Finite Element Analysis;339
29.3;3 Results and Discussions;341
29.4;4 Conclusion;343
29.5;References;344




