E-Book, Englisch, 535 Seiten
Ogawa Molecular Architectonics
1. Auflage 2017
ISBN: 978-3-319-57096-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
The Third Stage of Single Molecule Electronics
E-Book, Englisch, 535 Seiten
Reihe: Advances in Atom and Single Molecule Machines
ISBN: 978-3-319-57096-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book draws on the main themes covered during the International Workshop on Molecular Architectonics which took place in Shiretoko, Japan from August 3 to 6, 2015. The concepts and results explored in this book relate to the term 'molecular architectonics' which stands for electronic, optical and information-processing functions being orchestrated by molecular assemblies. This area is defined as the third stage of single-molecule electronics and builds on stage one, where measurements were performed on single-molecule layered films, and stage two, the resulting quantitative analyses. In this work, experts come together to write about the most important aspects of molecular architectonics. This interdisciplinary, visionary and unique book is of interest to scientists working on electronic materials, surface science and information processing sciences using noise and fluctuation.
Takuji Ogawa is Professor at Osaka University, Japan. His research is focused on the syntheses and measurements of single molecular electronic components, self-ordering of nanostructures on solid surfaces as well as on the development of new measurement techniques to estimate single-molecule conductivity.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Systems for Molecular Architectonics;11
4;1 Single-Molecule Boolean Logic Gates;12
4.1;Abstract;12
4.2;1 Introduction;12
4.3;2 Transduction Performance in Hybrid Molecular Electronics;16
4.4;3 Transduction Performance in Semi-classical Monomolecular Electronics;19
4.5;4 Transduction in Quantum Monomolecular Electronics;21
4.6;5 Conclusions;34
4.7;Acknowledgements;34
4.8;References;34
5;2 Information, Noise, and Energy Dissipation: Laws, Limits, and Applications;36
5.1;Abstract;36
5.2;1 Energy Dissipation and Miniaturization;36
5.3;2 Fundamental Lower Limits of Energy Dissipation for Writing an Information Bit [7–10];37
5.4;3 On Energy Dissipation During Information Erasure;38
5.4.1;3.1 Types of Erasure of Data in Memories [12];38
5.4.2;3.2 Landauer’s Principle;39
5.4.3;3.3 Non-validity of Landauer’s Principle;40
5.4.4;3.4 Erasure Dissipation in Practical Computing [7, 8];42
5.4.5;3.5 Conclusion About the Non-validity of Landauer’s Principle;43
5.5;4 Thermal Noise in the Quantum Regime [13, 14];43
5.5.1;4.1 A New Approach to Assess Zero-Point Johnson Noise: Energy and Force in a Capacitor [13];44
5.5.2;4.2 A New Approach to Assess Zero-Point Johnson Noise: Two “Perpetual Motion Machines” [13];47
5.5.3;4.3 Is the Johnson–Nyquist Formula Valid? [13];50
5.5.4;4.4 Conclusions and Observations About the Fluctuation–Dissipation Theorem [13, 14];50
5.6;5 Summary and Comments;51
5.7;References;52
6;Modeling Information Processing Using Nonidentical Coulomb Blockade Nanostructures;54
6.1;1 Introduction;54
6.2;2 Molecular Protected NP as a CB System;56
6.2.1;2.1 NP as a Single-Electron Transistor;59
6.3;3 The R-SET Model;62
6.3.1;3.1 Charging Equations of an Oscillatory R-SET;63
6.3.2;3.2 Information Processing with R-SETs;64
6.4;4 Variability at the Nanoscale;66
6.4.1;4.1 Redundancy to Counteract Noise: An XOR Gate;67
6.4.2;4.2 Taking Advantage of Diversity: Image Processing with Ensembles of R-SETS;68
6.5;5 Conclusions;74
6.6;References;75
7;4 Detection and Control of Charge State in Single Molecules Toward Informatics in Molecule Networks;78
7.1;Abstract;78
7.2;1 Introduction;78
7.3;2 Concept;79
7.4;3 Experimental;81
7.5;4 Static Charge Detection;83
7.6;5 Detection Mechanism;86
7.7;6 Detection of Charge Dynamics;88
7.8;7 Applications;92
7.8.1;7.1 Single-Molecule Discrimination;92
7.8.2;7.2 Detection of Spatial Distribution;93
7.8.3;7.3 Control of Charge State and Stochastic Resonance;96
7.9;8 Conclusions;100
7.10;Acknowledgements;100
7.11;References;100
8;5 DNA Molecular Electronics;104
8.1;Abstract;104
8.2;1 Introduction;104
8.3;2 DNA-Templated Self-Assembly;105
8.4;3 Supramolecular Interactions in Aqueous Solution: Porphyrin/DNA Complexes;106
8.5;4 DNA-Templated Complex on a Substrate Surface: Single-Molecule Observation;108
8.5.1;4.1 Porphyrin/DNA Complex;108
8.5.2;4.2 Cytochrome c/DNA Complex;109
8.6;5 Electric Conduction of DNA Nanostructures;110
8.6.1;5.1 Porphyrin/DNA Networks;113
8.6.2;5.2 Cytochrome c/DNA Networks;113
8.6.3;5.3 Stochastic Resonance;115
8.7;6 Summary;116
8.8;References;117
9;6 Coulomb-Blockade in Low-Dimensional Organic Conductors;119
9.1;Abstract;119
9.2;1 Introduction;119
9.3;2 Sample Preparation and Measurement;121
9.4;3 Electrical Characteristics of Monolayer;124
9.5;4 Coulomb Blockade of Charge Transport;126
9.5.1;4.1 Current–Voltage Characteristics;126
9.5.2;4.2 Curve Fittings;128
9.5.3;4.3 Dependence on Channel Length and Gate Voltage;129
9.5.4;4.4 Efros–Shklovskii Variable-Range Hopping;130
9.6;5 Construction of 2D CB Array Model;131
9.6.1;5.1 Simulation of Defect Distribution;131
9.6.2;5.2 Density Functional Theory (DFT) Calculation;133
9.7;6 Theoretical Estimation of VT(0) and T*;136
9.8;7 Conclusion;140
9.9;References;141
10;Emerging Computations on Nano-Electronic Circuits and Devices;143
10.1;1 Introduction;143
10.2;2 Natural Phenomena and Biological Behaviors as ``Text Books'' for Designing Novel Electronic Circuits/Devices;145
10.2.1;2.1 Information Processing in Nature/Living Things;145
10.2.2;2.2 Models of Natural Phenomena/Biological Behaviors;153
10.2.3;2.3 Policy for the Construction of Nature-Inspired/Bio-mimetic Devices;155
10.3;3 Basis of Single-Electron Circuits;155
10.4;4 Nature-Inspired/Bio-mimetic Single-Electron Circuits;157
10.4.1;4.1 Single-Electron Reaction--Diffusion Circuit;157
10.4.2;4.2 Single-Electron ``Slime-Mold'' Circuit;158
10.4.3;4.3 Single-Electron ``Soldier Crab Ball Gate'' Circuit;158
10.4.4;4.4 Single-Electron ``Ant Group'' Circuit;160
10.4.5;4.5 Neuromorphic Single-Electron Circuit;163
10.5;5 Conclusion;169
10.6;References;169
11;8 Addressing a? Single Molecular Spin? with Graphene-Based Nanoarchitectures;172
11.1;Abstract;172
11.2;1 Introduction;173
11.3;2 Molecular Spin Transistor;175
11.4;3 Fabrication of Graphene-Based Electrodes;177
11.5;4 Molecule with Magnetic Fingerprint;180
11.6;5 Realization of Molecular Devices;184
11.7;6 Low-Temperature Experiments;185
11.8;7 Conclusions;188
11.9;Acknowledgements;189
11.10;References;189
12;Surface Science for Molecular Architectonics;192
13;Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy;193
13.1;1 Introduction;193
13.2;2 Rf-STM;195
13.3;3 Molecular-Chain Oscillators;199
13.4;4 Resonant Mechanical Excitation;205
13.5;5 Nuclear and Electron Spin Resonance;210
13.6;6 Summarizing Discussion and Outlook;215
13.7;References;219
14;10 Assembly and Manipulation of Adsorbed Radical Molecules for Spin Control;225
14.1;Abstract;225
14.2;1 Introduction;225
14.3;2 Experiments;227
14.4;3 Bonding Configuration of Pc Molecule;227
14.5;4 Molecule Film of Double-Decker Phthalocyaninato Tb(III) Complexes;229
14.6;5 Hetero-Ligand Double-Decker Molecule;234
14.7;6 Triple Double-Decker Molecule;237
14.8;7 Kondo Resonance;239
14.9;8 Double- and Triple-Decker Pc and Kondo Behavior;240
14.10;9 Ligand Effect on the Kondo Behavior;245
14.11;10 Molecular Ordering and Kondo Resonance;247
14.12;11 Summary;250
14.13;References;251
15;Measurements for Molecular Architectonics;256
16;Perspectives of Molecular Manipulation and Fabrication;257
16.1;1 Introduction;257
16.2;2 Molecular Manipulation Experiments;260
16.2.1;2.1 A Short Survey of SPM-based Manipulation;260
16.2.2;2.2 Two-Contact Manipulation;261
16.2.3;2.3 An Excursion into Molecular Electronics;262
16.2.4;2.4 Continuous Manipulation with the AFM;264
16.2.5;2.5 Manipulating Complex Molecules;266
16.3;3 Modeling the Mechanics of Molecular Manipulation;276
16.3.1;3.1 Building an Efficient Mechanical Model;276
16.3.2;3.2 Training the Model: Adsorption Potentials from Force Measurements;281
16.3.3;3.3 The Role of Surface Corrugation;294
16.4;4 A Molecular Manipulation Laboratory;301
16.4.1;4.1 Introduction;301
16.4.2;4.2 MomaLab;302
16.4.3;4.3 Initial Results from MomaLab;310
16.5;5 Outlook;316
16.6;References;318
17;12 Interelectrode Stretched Photoelectro-Functional DNA Nanowire;324
17.1;Abstract;324
17.2;1 Introduction;325
17.3;2 Various Methods for Immobilization of DNA Molecule;327
17.4;3 Observation of DNA Nanowires on Mica Surface;328
17.5;4 Dielectrophoretic Trapping Method for DNA Stretching;334
17.6;5 Functionalization of Stretched DNA Nanowires;337
17.6.1;5.1 Association of Ruthenium(II) Complexes into Stretched DNA Nanowires;337
17.6.2;5.2 I–V Characteristics of the DNA/Ru(bpy)32+ Nanowires;339
17.7;6 Summary;339
17.8;Acknowledgements;340
17.9;References;340
18;13 Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements;343
18.1;Abstract;343
18.2;1 Introduction;343
18.3;2 Charge Transport Mechanisms in Molecular Junctions;345
18.4;3 Experimental Method;347
18.4.1;3.1 Sample Preparations;347
18.4.2;3.2 Conductance Measurements;347
18.4.3;3.3 Thermopower Measurements;348
18.5;4 Results and Discussion;349
18.5.1;4.1 Conductance Measurements;349
18.5.2;4.2 Thermopower Measurements;351
18.6;5 Conclusion;354
18.7;Acknowledgements;354
18.8;References;354
19;14 Electron Transport Through a Single Molecule in Scanning Tunneling Microscopy Junction;356
19.1;Abstract;356
19.2;1 Background;357
19.3;2 Basic Theory of Electron Transport Through Nanoscale Conductors;359
19.4;3 Experimental Techniques to Evaluate the Conductance of a Single Molecule;361
19.4.1;3.1 Determination of Number of Transport Channels and the Transmission Probabilities;364
19.4.1.1;3.1.1 Shot Noise Measurement;364
19.4.1.2;3.1.2 MARs Measurement;365
19.5;4 Electron Transport Through a Single C60 Molecule;370
19.5.1;4.1 Fabrication of a C60-SMJ and Conductance Measurement with STM;370
19.5.2;4.2 MARs Through a C60 Molecule and the Determination of n and {\varvec \tau}_{{\varvec i}} {\varvec }({\varvec i} \equal 1\comma 2\comma \ldots \comma {\varvec n});374
19.6;5 Summary and Outlook;377
19.7;Acknowledgements;378
19.8;References;378
20;15 Spin Polarization of Single Organic Molecule Using Spin-Polarized STM;381
20.1;Abstract;381
20.2;1 Introduction;381
20.3;2 STM Magnetoresistance Measurement;382
20.4;3 Ambiguous Spin Polarization Measurement in Spin-Polarized STM;385
20.5;4 Quantitative STM Spin Polarization Measurement;393
20.6;5 STM Spin Polarization Vector Measurement;394
20.7;6 Conclusions;395
20.8;Acknowledgements;396
20.9;References;396
21;16 Modification of Electrode Interfaces with Nanosized Materials for Electronic Applications;398
21.1;Abstract;398
21.2;1 Introduction;398
21.3;2 Immobilization of Nanoparticles on Electrode Surfaces;401
21.4;3 Immobilization of Organic or Complex Molecules on Electrode Surfaces;403
21.5;4 Immobilization of Biomolecules on Electrode Surfaces;410
21.6;5 Conclusions and Outlook;412
21.7;Acknowledgements;413
21.8;References;413
22;Design and Synthesis of Molecules for Molecular Architectonics;416
23;17 Design and Syntheses of Molecules for Nonlinear and Nonsymmetric Single-Molecule Electric Properties;417
23.1;Abstract;417
23.2;1 Introduction;417
23.3;2 Rectification;422
23.4;3 Negative Differential Resistance (NDR) in Single Molecules;430
23.5;References;433
24;18 Synthesis of Rigid ? Organic Molecular Architectures and Their Applications in Single-Molecule Measurement;436
24.1;Abstract;436
24.2;1 Introduction;436
24.3;2 Synthesis of Rigid ? Molecules;437
24.3.1;2.1 Pyrrole-Based ? Systems;438
24.3.1.1;2.1.1 Porphyrinoids;438
24.3.1.2;2.1.2 Cyclo[N]Pyrrole;439
24.3.2;2.2 Hydrocarbons;444
24.3.2.1;2.2.1 Phenacenes;446
24.3.2.2;2.2.2 Fused Azulenes;453
24.4;3 Connecting-Unit Preparation;453
24.5;4 Conclusion;457
24.6;Acknowledgements;457
24.7;References;457
25;19 Surface Synthesis of Molecular Wire Architectures;463
25.1;Abstract;463
25.2;1 Introduction;463
25.3;2 Synthesis of Molecular Wire Assembly by Epitaxial Electrochemical Polymerization;464
25.4;3 Heterojunction of Molecular Wire Materials;468
25.5;4 Carbon Nanowire Materials: Graphene Nanoribbons;474
25.6;5 Conclusion;478
25.7;Acknowledgements;478
25.8;References;479
26;20 Synthesis of Conjugated Polyrotaxanes and Its Application to Molecular Wires;483
26.1;Abstract;483
26.2;1 Introduction;483
26.3;2 Synthesis of Insulated Molecular Wires;485
26.3.1;2.1 Synthesis of Permethyl Cyclodextrin-Based Insulated Molecular Wires with Defect-Free Structure;485
26.3.2;2.2 Synthesis of Defect-Free Cyclodextrin-Based Insulated Molecular Wires with Polyrotaxane Structure;486
26.3.3;2.3 Synthesis of Insulated Molecular Wires with High Intermolecular Charge Mobility;493
26.3.4;2.4 Synthesis of Highly Conductive Zigzag Insulated Molecular Wire with High Intermolecular Charge Mobility;496
26.3.5;2.5 Synthesis of Functionalized Insulated Molecular Wires;499
26.3.6;2.6 Synthesis of Insulated Metallopolymers;502
26.4;3 Summary and Conclusions;505
26.5;Acknowledgements;506
26.6;References;506
27;21 Synthesis and Properties of Novel Organic Components Toward Molecular Architectonics;509
27.1;Abstract;509
27.2;1 Tripodal Anchor;509
27.3;2 Selenium-Functionalized Tripodal Anchors;510
27.4;3 Pyridine- and Amine-Functionalized Tripodal Anchors;512
27.5;4 Pyridine-Functionalized Tripodal Anchors for ?-Channel Hybridization;514
27.6;5 Thiophene-Functionalized Tripodal Anchors for ?-Channel Hybridization;517
27.7;6 Oligothiophenes;519
27.8;7 Oligothiophenes with Bulky Silyl Substituents as Insulating Units;521
27.9;8 Oligothiophenes with Fluorenes as Insulating Units;523
27.10;9 Insulation-Tuned Oligothiophenes;526
27.11;10 Long Insulated Oligothiophenes;529
27.12;11 Insulated Oligothiophenes with Electron-Accepting Characteristics;530
27.13;12 Summary;532
27.14;Acknowledgements;532
27.15;References;532




