E-Book, Englisch, Band 41, 404 Seiten
Plass / Dammann / Kaiser Multi-Carrier Systems & Solutions 2009
1. Auflage 2009
ISBN: 978-90-481-2530-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings from the 7th International Workshop on Multi-Carrier Systems & Solutions, May 2009, Herrsching, Germany
E-Book, Englisch, Band 41, 404 Seiten
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-90-481-2530-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
The 7th International Workshop on Multi-Carrier Systems and Solutions was held in May 2009. In providing the proceedings of that conference, this book offers comprehensive, state-of-the-art articles about multi-carrier techniques and systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
1.1;Program Committee;7
1.2;Additional Reviewers;7
2;Contents;8
3;Part I General Issues;12
3.1;Multicarrier Signals: A Natural Enabler for Cognitive Positioning Systems;13
3.1.1;1 Introduction;13
3.1.2;2 The (Modified) Cram´er-Rao Bound (CRB);14
3.1.3;3 MCRB(;15
3.1.4;) in the Frequency Domain;15
3.1.5;4 Filter-Bank Multicarrier Ranging Signals;18
3.1.6;5 Towards Cognitive Positioning;19
3.1.7;6 And Finally: Cognitive Positioning;20
3.1.8;7 Conclusions and FurtherWorks;22
3.1.9;References;23
3.2;Linearisation of Transmitter and Receiver Nonlinearities in Optical OFDM Transmission;24
3.2.1;1 Introduction;24
3.2.2;2 System Model;24
3.2.3;3 Stochastic Analysis of the System Output Process;27
3.2.4;4 Power Constraint;29
3.2.5;5 Simulation Results;30
3.2.6;6 Conclusion;32
3.2.7;References;33
3.3;Multi-user OFDM Based on Braided Convolutional Codes;34
3.3.1;1 Introduction;34
3.3.2;2 Braided Convolutional Codes;35
3.3.3;3 Braided Code Division Multiple Access;38
3.3.4;4 Simulation Results;40
3.3.5;5 Conclusions;42
3.3.6;References;42
3.4;Interference Aware Subcarrier and Power Allocation in OFDMA-Based Cognitive Radio Networks;44
3.4.1;1 Introduction;44
3.4.2;2 System Model and Problem Formulation;46
3.4.3;3 Interference-Aware OFDMA Subcarrier and Power Allocation;48
3.4.4;4 Simulation Results;52
3.4.5;5 Conclusions;53
3.4.6;References;54
3.5;An Efficient ICA Based Approach to Multiuser Detection in MIMO OFDM Systems;55
3.5.1;1 Introduction;55
3.5.2;2 The Proposed Method;56
3.5.3;3 Blind Source Separation;59
3.5.4;4 Simulation Results;60
3.5.5;5 Conclusion;62
3.5.6;Appendix;62
3.5.7;References;63
3.6;Windowing in the Receiver for OFDM Systems in High-Mobility Scenarios;65
3.6.1;1 Introduction;65
3.6.2;2 System Model;66
3.6.3;3 Windows;68
3.6.4;4 Simulation Results;70
3.6.5;5 Conclusions;72
3.6.6;References;73
4;Part II Multiple-Input and Multiple-Output (MIMO);74
4.1;MIMO–OFDM with Doppler Compensating Antennas in Rapidly Fading Channels;75
4.1.1;1 Introduction;75
4.1.2;2 System Model;76
4.1.3;3 Channel Estimation and Equalization;80
4.1.4;4 Simulation Results;81
4.1.5;5 Conclusions;83
4.1.6;References;83
4.2;Resource Allocation Algorithms for Minimum Rates Scheduling in MIMO–OFDM Systems;85
4.2.1;1 Introduction;85
4.2.2;2 System Model and Problem Formulation;86
4.2.3;3 Extended Eigenvalue Update Algorithm;88
4.2.4;4 Rate Based Coding Algorithm;89
4.2.5;5 Simulation Results;91
4.2.6;6 Conclusion;93
4.2.7;References;94
4.3;Transmit Antenna and Code Selection for Mimo Systems with Linear Receivers;95
4.3.1;1 Introduction;95
4.3.2;2 System Model;97
4.3.3;3 The TACS Selection Criteria;99
4.3.4;4 Simulation Results;100
4.3.5;5 Conclusions;105
4.3.6;References;105
4.4;Space-Time-Frequency Diversity in the Next Generation of Terrestrial Digital Video Broadcasting;107
4.4.1;1 Introduction;107
4.4.2;2 The DVB-T2 System;108
4.4.3;3 Doppler Diversity;111
4.4.4;4 Results;112
4.4.5;5 Summary;115
4.4.6;References;115
5;Part III Channel Estimation & Characterization;117
5.1;Robust 2-D Channel Estimation for Staggered Pilot Grids in Multi-Carrier Systems: LTE Downlink as an Example;118
5.1.1;1 Introduction;118
5.1.2;2 Robust 2-D Channel Estimation;120
5.1.3;3 Simulation Results;123
5.1.4;4 Conclusion;124
5.1.5;References;125
5.2;Block-IFDMA – Iterative Channel Estimation Versus Estimation with Interpolation Filters;127
5.2.1;1 Introduction;127
5.2.2;2 System Model;128
5.2.3;3 Channel Estimation;129
5.2.4;4 Performance Analysis;132
5.2.5;5 Conclusion;135
5.2.6;References;135
5.3;A Study on Channel Estimation Using EM Algorithm for MobileWiMAX Systems;137
5.3.1;1 Introduction;137
5.3.2;2 SignalModel;138
5.3.3;3 Channel Estimation Algorithm;140
5.3.4;4 Numerical Examples & Conclusions;142
5.3.5;5 Conclusions;144
5.3.6;References;145
5.4;A Technique for Correcting Residual Frequency Offset in OFDM Systems;146
5.4.1;1 Introduction;146
5.4.2;2 Signals and Offset Correction Method;147
5.4.3;3 Proposed Methods;149
5.4.4;4 Results and Discussions;151
5.4.5;5 Conclusions;154
5.4.6;References;155
5.5;A Joint Channel and Carrier Frequency Offset Estimation Based on Spread Pilot for Future Broadcasting Systems;156
5.5.1;1 Introduction;156
5.5.2;2 System Model;157
5.5.3;3 Simulation Results;161
5.5.4;4 Conclusion;164
5.5.5;References;164
5.6;Channel Characteristics of Different Floors for Joint Communications and Positioning;165
5.6.1;1 Introduction;165
5.6.2;2 Channel Measurement Campaign;166
5.6.3;3 Data Processing and Evaluation;169
5.6.4;4 Results;170
5.6.5;5 Conclusion;173
5.6.6;References;174
6;Part IV Long Term Evolution (LTE);175
6.1;Uplink Power Control Performance in UTRAN LTE Networks;176
6.1.1;1 Introduction;176
6.1.2;2 Uplink Power Control Algorithm;177
6.1.3;3 Simulation Model;178
6.1.4;4 Simulation Results;178
6.1.5;5 Conclusions;184
6.1.6;References;185
6.2;Improving UMTS LTE Performance by UEP in High Order Modulation;186
6.2.1;1 Introduction;186
6.2.2;3 UEP and Proposed Bit Reordering;189
6.2.3;4 Simulation Results;191
6.2.4;5 Conclusion;194
6.2.5;References;195
6.3;Performance Evaluation of a Low-Complexity LTE Base Station Receiver;196
6.3.1;1 Introduction;196
6.3.2;2 Receiver Overview;197
6.3.3;3 Preamble Detection and Timing Advance;197
6.3.4;4 Channel Estimation;199
6.3.5;5 Discontinuous Timing Advance Tracking;200
6.3.6;6 MIMO Equalization and Frequency Offset Compensation;201
6.3.7;7 Turbo Decoding;203
6.3.8;8 Discussion;203
6.3.9;References;204
7;Part V Peak-to-Average Power Ratio (PAPR);206
7.1;On DT-CWT Based OFDM: PAPR Analysis;207
7.1.1;1 Introduction;207
7.1.2;2 The Dual-Tree ComplexWavelet Transform (DT-CWT);208
7.1.3;3 OFDM and WPM Systems;209
7.1.4;4 PAPR in OFDM Based on DT-CWT;212
7.1.5;5 Conclusions;215
7.1.6;References;215
7.2;SOCP Approach for PAPR Reduction Using Tone Reservation for the Future DVB-T/H Standards;218
7.2.1;1 Introduction;218
7.2.2;2 System Description;219
7.2.3;3 Dedicated Subcarriers Power Control;220
7.2.4;4 Performance Evaluation of the Method;222
7.2.5;5 Conclusions;224
7.2.6;References;224
7.3;Reduced-PAPR Code Allocation Strategy for MC-CDMA Transmissions;226
7.3.1;1 Introduction;226
7.3.2;2 System Description;227
7.3.3;3 PAPRAnalysis;228
7.3.4;4 Reduced PAPR Code Allocation;229
7.3.5;5 Numerical Results;232
7.3.6;6 Conclusions;234
7.3.7;References;235
8;Part VI Adaptive Transmission;236
8.1;Adaptive Multiuser OFDMA Systems with High Priority Users in the Presence of Imperfect CQI;237
8.1.1;1 Introduction;237
8.1.2;2 System Model;238
8.1.3;3 Channel Quality Information;238
8.1.4;4 Adaptive Transmission Applying WPFS;239
8.1.5;5 Joint Impact of Imperfect CQI and User Priority;241
8.1.6;6 Numerical Results;244
8.1.7;7 Conclusions;246
8.1.8;References;246
8.2;Adaptive BICM-OFDM Systems;247
8.2.1;1 Introduction;247
8.2.2;2 System Model;248
8.2.3;3 Link Adaptation for Single Antenna Systems;248
8.2.4;4 Extension to Multiple Antenna Systems;252
8.2.5;5 Conclusion;254
8.2.6;References;255
8.3;Power Allocation with Interference Constraint in Multicarrier Based Cognitive Radio Systems;256
8.3.1;1 Introduction;256
8.3.2;2 System Model and Problem Formulation;257
8.3.3;3 Proposed Algorithm;259
8.3.4;4 Multi User Resource Allocations in Downlink;261
8.3.5;5 Simulation Results;262
8.3.6;6 Conclusion;264
8.3.7;References;265
8.4;Limited-Feedback Multiuser MIMO-OFDM Downlink with Spatial Multiplexing and Per-Chunk / Per-Antenna User Scheduling;266
8.4.1;1 Introduction;266
8.4.2;2 Preliminaries;267
8.4.3;3 Multi-User MIMO-OFDM Downlink Transmission Schemes Based on Limited Feedback;268
8.4.4;4 Numerical Results;272
8.4.5;5 Conclusions;274
8.4.6;References;274
9;Part VII Performance Evaluation;276
9.1;Simple Series Form Formula of BER Performance of M-ary QAM/OFDM Signals Over Nonlinear Fading Channels;277
9.1.1;1 Introduction;277
9.1.2;2 System Description;278
9.1.3;3 Bit Error Rate Analysis;279
9.1.4;4 Numerical Results;283
9.1.5;5 Conclusion;285
9.1.6;References;286
9.2;A Novel Exponential Link Error Prediction Method for OFDM Systems;287
9.2.1;1 Introduction;287
9.2.2;2 Channel Model;288
9.2.3;3 PER Prediction Based on Effective SNR Mapping;289
9.2.4;4;291
9.2.5;ESM;291
9.2.6;5 Numerical Results;293
9.2.7;6 Conclusions;295
9.2.8;References;295
9.3;WIMAX Performance in the Airport Environment;297
9.3.1;1 Introduction;297
9.3.2;2 System Characteristics;298
9.3.3;3 Channel Model;301
9.3.4;4 Results;302
9.3.5;5 Conclusions;305
9.3.6;References;305
9.4;Throughput Enhancement Through Femto-Cell Deployment;307
9.4.1;1 Introduction;307
9.4.2;2 System Model and Simulation Setup;309
9.4.3;3 Results;310
9.4.4;4 Conclusion;314
9.4.5;References;315
10;Part VIII Modulation & Demodulation;316
10.1;Phase Rotation/MC-CDMA for Uplink Transmission;317
10.1.1;1 Introduction;317
10.1.2;2 Proposed System Model;318
10.1.3;3 Computer Simulation;322
10.1.4;4 Conclusions;325
10.1.5;References;325
10.2;Hierarchical Modulation in DVB-T/H Mobile TV Transmission;327
10.2.1;1 Introduction;327
10.2.2;2 Hierarchical Modulation;328
10.2.3;3 Laboratory Transmission Setup;329
10.2.4;4 Experimental Results;330
10.2.5;5 Conclusion;335
10.2.6;References;335
10.3;Efficient Compensation of Frequency Selective TX and RX IQ Imbalances in OFDM Systems;336
10.3.1;1 Introduction;336
10.3.2;2 System Model;337
10.3.3;3 IQ Imbalance Compensation Scheme;339
10.3.4;4 Simulation Results;342
10.3.5;5 Conclusion;344
10.3.6;References;344
11;Part IX Spectrum & Interference;345
11.1;Dynamic Cross-Layer Spectrum Allocation for Multi-Band High-Rate UWB Systems;346
11.1.1;1 Introduction;346
11.1.2;2 System Model;347
11.1.3;3 Optimal Spectrum Allocation;349
11.1.4;4 Cross-Layer Solution;351
11.1.5;5 System Performance;352
11.1.6;6 Conclusion;354
11.1.7;References;354
11.2;Egress Reduction for OFDM Via Transmit Windowing – Framework and Comparison;356
11.2.1;1 Introduction;356
11.2.2;2 System Model;357
11.2.3;3 TransmitWindowing Techniques;358
11.2.4;4 Performance Measure and Optimization;360
11.2.5;5 Comparison: Case Study;360
11.2.6;6 Conclusions;364
11.2.7;References;364
11.3;Interference Mitigation for the Future Aeronautical Communication System in the L-Band;365
11.3.1;1 Introduction;365
11.3.2;2 Modelling of Interference;366
11.3.3;3 Interference Mitigation;368
11.3.4;4 Simulation Results;371
11.3.5;5 Conclusions and Outlook;373
11.3.6;References;373
12;Part X Demonstration;375
12.1;Ranging and Communications with Impulse Radio Ultrawideband;376
12.1.1;1 Introduction;376
12.1.2;2 UWB System Description;377
12.1.3;3 UWB Transceiver System Description;378
12.1.4;4 Ranging and Positioning Technique;381
12.1.5;5 Results;383
12.1.6;6 Conclusions;383
12.1.7;References;384
12.2;Generic SDR Platform Used for Multi-Carrier Aided Localization;385
12.2.1;1 Introduction;385
12.2.2;2 Platform Overview;386
12.2.3;3 Software Features;389
12.2.4;4 Parameter Measurement Procedure;390
12.2.5;5 Conclusions;391
12.2.6;References;392




