Plass / Dammann / Kaiser | Multi-Carrier Systems & Solutions 2009 | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 41, 404 Seiten

Reihe: Lecture Notes in Electrical Engineering

Plass / Dammann / Kaiser Multi-Carrier Systems & Solutions 2009

Proceedings from the 7th International Workshop on Multi-Carrier Systems & Solutions, May 2009, Herrsching, Germany
1. Auflage 2009
ISBN: 978-90-481-2530-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings from the 7th International Workshop on Multi-Carrier Systems & Solutions, May 2009, Herrsching, Germany

E-Book, Englisch, Band 41, 404 Seiten

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-90-481-2530-2
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



The 7th International Workshop on Multi-Carrier Systems and Solutions was held in May 2009. In providing the proceedings of that conference, this book offers comprehensive, state-of-the-art articles about multi-carrier techniques and systems.

Plass / Dammann / Kaiser Multi-Carrier Systems & Solutions 2009 jetzt bestellen!

Weitere Infos & Material


1;Preface;6
1.1;Program Committee;7
1.2;Additional Reviewers;7
2;Contents;8
3;Part I General Issues;12
3.1;Multicarrier Signals: A Natural Enabler for Cognitive Positioning Systems;13
3.1.1;1 Introduction;13
3.1.2;2 The (Modified) Cram´er-Rao Bound (CRB);14
3.1.3;3 MCRB(;15
3.1.4;) in the Frequency Domain;15
3.1.5;4 Filter-Bank Multicarrier Ranging Signals;18
3.1.6;5 Towards Cognitive Positioning;19
3.1.7;6 And Finally: Cognitive Positioning;20
3.1.8;7 Conclusions and FurtherWorks;22
3.1.9;References;23
3.2;Linearisation of Transmitter and Receiver Nonlinearities in Optical OFDM Transmission;24
3.2.1;1 Introduction;24
3.2.2;2 System Model;24
3.2.3;3 Stochastic Analysis of the System Output Process;27
3.2.4;4 Power Constraint;29
3.2.5;5 Simulation Results;30
3.2.6;6 Conclusion;32
3.2.7;References;33
3.3;Multi-user OFDM Based on Braided Convolutional Codes;34
3.3.1;1 Introduction;34
3.3.2;2 Braided Convolutional Codes;35
3.3.3;3 Braided Code Division Multiple Access;38
3.3.4;4 Simulation Results;40
3.3.5;5 Conclusions;42
3.3.6;References;42
3.4;Interference Aware Subcarrier and Power Allocation in OFDMA-Based Cognitive Radio Networks;44
3.4.1;1 Introduction;44
3.4.2;2 System Model and Problem Formulation;46
3.4.3;3 Interference-Aware OFDMA Subcarrier and Power Allocation;48
3.4.4;4 Simulation Results;52
3.4.5;5 Conclusions;53
3.4.6;References;54
3.5;An Efficient ICA Based Approach to Multiuser Detection in MIMO OFDM Systems;55
3.5.1;1 Introduction;55
3.5.2;2 The Proposed Method;56
3.5.3;3 Blind Source Separation;59
3.5.4;4 Simulation Results;60
3.5.5;5 Conclusion;62
3.5.6;Appendix;62
3.5.7;References;63
3.6;Windowing in the Receiver for OFDM Systems in High-Mobility Scenarios;65
3.6.1;1 Introduction;65
3.6.2;2 System Model;66
3.6.3;3 Windows;68
3.6.4;4 Simulation Results;70
3.6.5;5 Conclusions;72
3.6.6;References;73
4;Part II Multiple-Input and Multiple-Output (MIMO);74
4.1;MIMO–OFDM with Doppler Compensating Antennas in Rapidly Fading Channels;75
4.1.1;1 Introduction;75
4.1.2;2 System Model;76
4.1.3;3 Channel Estimation and Equalization;80
4.1.4;4 Simulation Results;81
4.1.5;5 Conclusions;83
4.1.6;References;83
4.2;Resource Allocation Algorithms for Minimum Rates Scheduling in MIMO–OFDM Systems;85
4.2.1;1 Introduction;85
4.2.2;2 System Model and Problem Formulation;86
4.2.3;3 Extended Eigenvalue Update Algorithm;88
4.2.4;4 Rate Based Coding Algorithm;89
4.2.5;5 Simulation Results;91
4.2.6;6 Conclusion;93
4.2.7;References;94
4.3;Transmit Antenna and Code Selection for Mimo Systems with Linear Receivers;95
4.3.1;1 Introduction;95
4.3.2;2 System Model;97
4.3.3;3 The TACS Selection Criteria;99
4.3.4;4 Simulation Results;100
4.3.5;5 Conclusions;105
4.3.6;References;105
4.4;Space-Time-Frequency Diversity in the Next Generation of Terrestrial Digital Video Broadcasting;107
4.4.1;1 Introduction;107
4.4.2;2 The DVB-T2 System;108
4.4.3;3 Doppler Diversity;111
4.4.4;4 Results;112
4.4.5;5 Summary;115
4.4.6;References;115
5;Part III Channel Estimation & Characterization;117
5.1;Robust 2-D Channel Estimation for Staggered Pilot Grids in Multi-Carrier Systems: LTE Downlink as an Example;118
5.1.1;1 Introduction;118
5.1.2;2 Robust 2-D Channel Estimation;120
5.1.3;3 Simulation Results;123
5.1.4;4 Conclusion;124
5.1.5;References;125
5.2;Block-IFDMA – Iterative Channel Estimation Versus Estimation with Interpolation Filters;127
5.2.1;1 Introduction;127
5.2.2;2 System Model;128
5.2.3;3 Channel Estimation;129
5.2.4;4 Performance Analysis;132
5.2.5;5 Conclusion;135
5.2.6;References;135
5.3;A Study on Channel Estimation Using EM Algorithm for MobileWiMAX Systems;137
5.3.1;1 Introduction;137
5.3.2;2 SignalModel;138
5.3.3;3 Channel Estimation Algorithm;140
5.3.4;4 Numerical Examples & Conclusions;142
5.3.5;5 Conclusions;144
5.3.6;References;145
5.4;A Technique for Correcting Residual Frequency Offset in OFDM Systems;146
5.4.1;1 Introduction;146
5.4.2;2 Signals and Offset Correction Method;147
5.4.3;3 Proposed Methods;149
5.4.4;4 Results and Discussions;151
5.4.5;5 Conclusions;154
5.4.6;References;155
5.5;A Joint Channel and Carrier Frequency Offset Estimation Based on Spread Pilot for Future Broadcasting Systems;156
5.5.1;1 Introduction;156
5.5.2;2 System Model;157
5.5.3;3 Simulation Results;161
5.5.4;4 Conclusion;164
5.5.5;References;164
5.6;Channel Characteristics of Different Floors for Joint Communications and Positioning;165
5.6.1;1 Introduction;165
5.6.2;2 Channel Measurement Campaign;166
5.6.3;3 Data Processing and Evaluation;169
5.6.4;4 Results;170
5.6.5;5 Conclusion;173
5.6.6;References;174
6;Part IV Long Term Evolution (LTE);175
6.1;Uplink Power Control Performance in UTRAN LTE Networks;176
6.1.1;1 Introduction;176
6.1.2;2 Uplink Power Control Algorithm;177
6.1.3;3 Simulation Model;178
6.1.4;4 Simulation Results;178
6.1.5;5 Conclusions;184
6.1.6;References;185
6.2;Improving UMTS LTE Performance by UEP in High Order Modulation;186
6.2.1;1 Introduction;186
6.2.2;3 UEP and Proposed Bit Reordering;189
6.2.3;4 Simulation Results;191
6.2.4;5 Conclusion;194
6.2.5;References;195
6.3;Performance Evaluation of a Low-Complexity LTE Base Station Receiver;196
6.3.1;1 Introduction;196
6.3.2;2 Receiver Overview;197
6.3.3;3 Preamble Detection and Timing Advance;197
6.3.4;4 Channel Estimation;199
6.3.5;5 Discontinuous Timing Advance Tracking;200
6.3.6;6 MIMO Equalization and Frequency Offset Compensation;201
6.3.7;7 Turbo Decoding;203
6.3.8;8 Discussion;203
6.3.9;References;204
7;Part V Peak-to-Average Power Ratio (PAPR);206
7.1;On DT-CWT Based OFDM: PAPR Analysis;207
7.1.1;1 Introduction;207
7.1.2;2 The Dual-Tree ComplexWavelet Transform (DT-CWT);208
7.1.3;3 OFDM and WPM Systems;209
7.1.4;4 PAPR in OFDM Based on DT-CWT;212
7.1.5;5 Conclusions;215
7.1.6;References;215
7.2;SOCP Approach for PAPR Reduction Using Tone Reservation for the Future DVB-T/H Standards;218
7.2.1;1 Introduction;218
7.2.2;2 System Description;219
7.2.3;3 Dedicated Subcarriers Power Control;220
7.2.4;4 Performance Evaluation of the Method;222
7.2.5;5 Conclusions;224
7.2.6;References;224
7.3;Reduced-PAPR Code Allocation Strategy for MC-CDMA Transmissions;226
7.3.1;1 Introduction;226
7.3.2;2 System Description;227
7.3.3;3 PAPRAnalysis;228
7.3.4;4 Reduced PAPR Code Allocation;229
7.3.5;5 Numerical Results;232
7.3.6;6 Conclusions;234
7.3.7;References;235
8;Part VI Adaptive Transmission;236
8.1;Adaptive Multiuser OFDMA Systems with High Priority Users in the Presence of Imperfect CQI;237
8.1.1;1 Introduction;237
8.1.2;2 System Model;238
8.1.3;3 Channel Quality Information;238
8.1.4;4 Adaptive Transmission Applying WPFS;239
8.1.5;5 Joint Impact of Imperfect CQI and User Priority;241
8.1.6;6 Numerical Results;244
8.1.7;7 Conclusions;246
8.1.8;References;246
8.2;Adaptive BICM-OFDM Systems;247
8.2.1;1 Introduction;247
8.2.2;2 System Model;248
8.2.3;3 Link Adaptation for Single Antenna Systems;248
8.2.4;4 Extension to Multiple Antenna Systems;252
8.2.5;5 Conclusion;254
8.2.6;References;255
8.3;Power Allocation with Interference Constraint in Multicarrier Based Cognitive Radio Systems;256
8.3.1;1 Introduction;256
8.3.2;2 System Model and Problem Formulation;257
8.3.3;3 Proposed Algorithm;259
8.3.4;4 Multi User Resource Allocations in Downlink;261
8.3.5;5 Simulation Results;262
8.3.6;6 Conclusion;264
8.3.7;References;265
8.4;Limited-Feedback Multiuser MIMO-OFDM Downlink with Spatial Multiplexing and Per-Chunk / Per-Antenna User Scheduling;266
8.4.1;1 Introduction;266
8.4.2;2 Preliminaries;267
8.4.3;3 Multi-User MIMO-OFDM Downlink Transmission Schemes Based on Limited Feedback;268
8.4.4;4 Numerical Results;272
8.4.5;5 Conclusions;274
8.4.6;References;274
9;Part VII Performance Evaluation;276
9.1;Simple Series Form Formula of BER Performance of M-ary QAM/OFDM Signals Over Nonlinear Fading Channels;277
9.1.1;1 Introduction;277
9.1.2;2 System Description;278
9.1.3;3 Bit Error Rate Analysis;279
9.1.4;4 Numerical Results;283
9.1.5;5 Conclusion;285
9.1.6;References;286
9.2;A Novel Exponential Link Error Prediction Method for OFDM Systems;287
9.2.1;1 Introduction;287
9.2.2;2 Channel Model;288
9.2.3;3 PER Prediction Based on Effective SNR Mapping;289
9.2.4;4;291
9.2.5;ESM;291
9.2.6;5 Numerical Results;293
9.2.7;6 Conclusions;295
9.2.8;References;295
9.3;WIMAX Performance in the Airport Environment;297
9.3.1;1 Introduction;297
9.3.2;2 System Characteristics;298
9.3.3;3 Channel Model;301
9.3.4;4 Results;302
9.3.5;5 Conclusions;305
9.3.6;References;305
9.4;Throughput Enhancement Through Femto-Cell Deployment;307
9.4.1;1 Introduction;307
9.4.2;2 System Model and Simulation Setup;309
9.4.3;3 Results;310
9.4.4;4 Conclusion;314
9.4.5;References;315
10;Part VIII Modulation & Demodulation;316
10.1;Phase Rotation/MC-CDMA for Uplink Transmission;317
10.1.1;1 Introduction;317
10.1.2;2 Proposed System Model;318
10.1.3;3 Computer Simulation;322
10.1.4;4 Conclusions;325
10.1.5;References;325
10.2;Hierarchical Modulation in DVB-T/H Mobile TV Transmission;327
10.2.1;1 Introduction;327
10.2.2;2 Hierarchical Modulation;328
10.2.3;3 Laboratory Transmission Setup;329
10.2.4;4 Experimental Results;330
10.2.5;5 Conclusion;335
10.2.6;References;335
10.3;Efficient Compensation of Frequency Selective TX and RX IQ Imbalances in OFDM Systems;336
10.3.1;1 Introduction;336
10.3.2;2 System Model;337
10.3.3;3 IQ Imbalance Compensation Scheme;339
10.3.4;4 Simulation Results;342
10.3.5;5 Conclusion;344
10.3.6;References;344
11;Part IX Spectrum & Interference;345
11.1;Dynamic Cross-Layer Spectrum Allocation for Multi-Band High-Rate UWB Systems;346
11.1.1;1 Introduction;346
11.1.2;2 System Model;347
11.1.3;3 Optimal Spectrum Allocation;349
11.1.4;4 Cross-Layer Solution;351
11.1.5;5 System Performance;352
11.1.6;6 Conclusion;354
11.1.7;References;354
11.2;Egress Reduction for OFDM Via Transmit Windowing – Framework and Comparison;356
11.2.1;1 Introduction;356
11.2.2;2 System Model;357
11.2.3;3 TransmitWindowing Techniques;358
11.2.4;4 Performance Measure and Optimization;360
11.2.5;5 Comparison: Case Study;360
11.2.6;6 Conclusions;364
11.2.7;References;364
11.3;Interference Mitigation for the Future Aeronautical Communication System in the L-Band;365
11.3.1;1 Introduction;365
11.3.2;2 Modelling of Interference;366
11.3.3;3 Interference Mitigation;368
11.3.4;4 Simulation Results;371
11.3.5;5 Conclusions and Outlook;373
11.3.6;References;373
12;Part X Demonstration;375
12.1;Ranging and Communications with Impulse Radio Ultrawideband;376
12.1.1;1 Introduction;376
12.1.2;2 UWB System Description;377
12.1.3;3 UWB Transceiver System Description;378
12.1.4;4 Ranging and Positioning Technique;381
12.1.5;5 Results;383
12.1.6;6 Conclusions;383
12.1.7;References;384
12.2;Generic SDR Platform Used for Multi-Carrier Aided Localization;385
12.2.1;1 Introduction;385
12.2.2;2 Platform Overview;386
12.2.3;3 Software Features;389
12.2.4;4 Parameter Measurement Procedure;390
12.2.5;5 Conclusions;391
12.2.6;References;392



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.