Ploeg / Nauta | Calibration Techniques in Nyquist A/D Converters | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 873, 203 Seiten

Reihe: The Springer International Series in Engineering and Computer Science

Ploeg / Nauta Calibration Techniques in Nyquist A/D Converters


1. Auflage 2006
ISBN: 978-1-4020-4635-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 873, 203 Seiten

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4020-4635-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book analyses different A/D-converter architectures with an emphasis on the maximum achievable power efficiency. It also provides an accessible overview of the state-of-the art in calibration techniques for Nyquist A/D converters. The calibration techniques presented are applicable to other analog-to-digital systems, such as those applied in integrated receivers. They allow implementation without introducing a speed or power penalty.

Ploeg / Nauta Calibration Techniques in Nyquist A/D Converters jetzt bestellen!

Weitere Infos & Material


1;Table of contents;7
2;List of abbreviations;11
3;List of symbols;13
4;Preface;17
5;1 Introduction;19
5.1;1.1 A/D conversion systems;19
5.2;1.2 Motivation and objectives;23
5.3;1.3 Layout of the book;23
6;2 Accuracy, speed and power relation;25
6.1;2.1 Introduction;25
6.2;2.2 IC-technology accuracy limitations;26
6.3;2.3 Speed and power;29
6.4;2.4 Maximum speed;31
6.5;2.5 CMOS technology trends;33
6.6;2.6 Conclusions;36
7;3 A/D converter architecture comparison;39
7.1;3.1 Introduction;39
7.2;3.2 Flash;40
7.3;3.3 Folding and interpolation;51
7.4;3.4 Two-step;56
7.5;3.5 Pipe-line;64
7.6;3.6 Successive approximation;72
7.7;3.7 Theoretical power consumption comparison;74
7.8;3.8 Conclusions;84
8;4 Enhancement techniques for two- step A/ D converters;85
8.1;4.1 Introduction;85
8.2;4.2 Error sources in a two-step architecture;85
8.3;4.3 Residue gain in two-step A/D converters;87
8.4;4.4 Offset calibration;93
8.5;4.5 Mixed-signal chopping and calibration;101
9;5 A 10-bit two-step ADC with analog online calibration;121
9.1;5.1 Introduction;121
9.2;5.2 Two-step architecture;123
9.3;5.3 Circuit design;128
9.4;5.4 Experimental results;135
9.5;5.5 Discussion;139
9.6;5.6 Conclusions;140
10;6 A 12-bit two-step ADC with mixed- signal chopping and calibration;141
10.1;6.1 Introduction;141
10.2;6.2 Two-step architecture;144
10.3;6.3 Mixed-signal chopping and calibration;151
10.4;6.4 Circuit design;154
10.5;6.5 Experimental results;159
10.6;6.6 Discussion;163
10.7;6.7 Conclusions;164
11;7 A low-power 16-bit three-step ADC for imaging applications;167
11.1;7.1 Introduction;167
11.2;7.2 Three-step architecture;169
11.3;7.3 Noise considerations;174
11.4;7.4 Mixed-signal chopping and calibration;176
11.5;7.5 Supply voltages;179
11.6;7.6 Experimental results;180
11.7;7.7 Discussion;185
11.8;7.8 Conclusions;186
12;8 Conclusions;187
13;Appendix A Static and dynamic accuracy requirements;191
13.1;A.1 Static error requirments;191
13.2;A.2 Dynamic error requirements;193
14;References;195
15;Index;207


Chapter 1 Introduction (p. 1)

1.1 A/D conversion systems

In modern systems, most of the signal processing is performed in the digital domain. Digital circuits have a lower sensitivity to noise and are less susceptible to fluctuations in supply and process variations. Unlike with analog circuits, signal processing in the digital domain offers greater programmability, error correction and storage possibilities.

They are found in many systems that require digital signal processing. This book focuses on A/D converters. A/D converters can be classified into two groups. There are A/D converters with a high accuracy and a low sample rate and A/D converters with a low accuracy and a high sample rate. This is illustrated in figure 1.1.

The first group includes sigma-delta converters for audio, signal transmission and instrumentation systems, while the second group includes video, camera and wide-band signal transmission systems. In order to increase the accuracy or the speed specifications of the A/D converters in both groups more power is required. The A/D converters from the second group of converters are dealt with in this book.

They are found in products like television sets, security cameras, medical imaging devices, instrumentation, etc. The sampling speed required for these applications is generally in excess of 25 MSample/s and the resolution is 10 bits or more. A few examples of these applications are shown in figure 1.2. The position of the A/D converter in such systems is shown in figure 1.3. In this figure, the signal is conditioned in the analog domain before it is applied to the A/D converter.

For example, the A/D converter converts the down-converted radio frequency (RF) antenna signal to the digital domain. In the case of fgure 1.3, the filtering and channel selection is performed in the analog domain. Another example is an analog video signal with an aspect ratio of 4:3, which is converted to the digital domain. In the digital domain a field memory and additional processing is used to resize the video signal to an aspect ratio of 16:9.

A D/A converter converts this signal back to the analog domain to be applied to a display [1]. Similar signal processing is required As shown in figure 1.3, the A/D converters form the connection between the ana- to convert a video signal with a 50 Hz frame rate to a video signal with a 100 Hz frame rate. The performance level should be such that the system is not affected by the imperfections of the data converter.

Its design is therefore extremely important. Because of the trend towards decreasing feature sizes on silicon, it is becoming cheaper to shift analog functions, such as amplifying, filtering and mixing, into the digital domain. This involves shifting the A/D converter towards the input of the system, an extreme example of this is shown in figure 1.4.

In order to shift the A/D converter towards the input of such systems, A/D converters are required with a greater dynamic range and higher sampling speeds because there is less analog signal conditioning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.