E-Book, Englisch, 400 Seiten, Web PDF
Prieditis / Russell Machine Learning Proceedings 1995
1. Auflage 2014
ISBN: 978-1-4832-9866-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, July 9-12 1995
E-Book, Englisch, 400 Seiten, Web PDF
ISBN: 978-1-4832-9866-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Machine Learning Proceedings 1995
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Machine Learning;2
3;Copyright Page;3
4;Table of Contents;4
5;Preface;10
6;Advisory Committee;11
7;Program Committee;11
8;Auxiliary Reviewers;12
9;Workshops;12
10;Tutorials;12
11;PART 1: CONTRIBUTED PAPERS;16
11.1;Chapter 1. On-line Learning of Binary Lexical Relations Using Two-dimensional Weighted Majority Algorithms;18
11.1.1;ABSTRACT;18
11.1.2;1 Introduction;18
11.1.3;2 On-line Learning Model for Binary Relations;20
11.1.4;3 Two-dimensional Weighted Majority Prediction Algorithms;20
11.1.5;4 Experimental Results;21
11.1.6;5 Theoretical Performance Analysis;23
11.1.7;6 Concluding Remarks;26
11.1.8;Acknowledgement;26
11.1.9;References;26
11.2;Chapter 2. On Handling Tree-Structured Attributes in Decision Tree Learning;27
11.2.1;Abstract;27
11.2.2;1 Introduction;27
11.2.3;2 Decision Trees With Tree-Structured Attributes;28
11.2.4;3 Pre-processing Approaches;29
11.2.5;4 A Direct Approach;30
11.2.6;5 Analytical Comparison;31
11.2.7;6 Experimental Comparison;33
11.2.8;7 Summary and Conclusion;34
11.2.9;Acknowledgement;35
11.2.10;References;35
11.3;Chapter 3. Theory and Applications of Agnostic PAC-Learning with Small Decision Trees;36
11.3.1;Abstract;36
11.3.2;1 INTRODUCTION;36
11.3.3;2 THE AGNOSTIC PAC-LEARNING ALGORITHM T2;38
11.3.4;3 EVALUATION OF T2 ON "REAL-WORLD" CLASSIFICATION PROBLEMS;40
11.3.5;4 LEARNING CURVES FOR DECISION TREES OF SMALL DEPTH;42
11.3.6;5 CONCLUSION;43
11.3.7;Acknowledgement;43
11.3.8;References;44
11.4;Chapter 4. Residual Algorithms: Reinforcement Learning with Function Approximation;45
11.4.1;ABSTRACT;45
11.4.2;1 INTRODUCTION;45
11.4.3;2 ALGORITHMS FOR LOOKUP TABLES;46
11.4.4;3 DIRECT ALGORITHMS;46
11.4.5;4 RESIDUAL GRADIENT ALGORITHMS;47
11.4.6;5 RESIDUAL ALGORITHMS;48
11.4.7;6 STOCHASTIC MDPS AND MODELS;50
11.4.8;7 MDPS WITH MULTIPLE ACTIONS;50
11.4.9;8 RESIDUAL ALGORITHM SUMMARY;50
11.4.10;9 SIMULATION RESULTS;51
11.4.11;10 CONCLUSIONS;52
11.4.12;Acknowledgments;52
11.4.13;References;52
11.5;Chapter 5. Removing the Genetics from the Standard Genetic Algorithm;53
11.5.1;Abstract;53
11.5.2;1. THE GENETIC ALGORITHM (GA);53
11.5.3;2. FOUR PEAKS: A PROBLEM DESIGNED TO BE GA-FRIENDLY;54
11.5.4;3. SELECTING THE GA'S PARAMETERS;55
11.5.5;4. POPULATION-BASED INCREMENTAL LEARNING;56
11.5.6;5. EMPIRICAL ANALYSIS ON THE FOUR PEAKS PROBLEM;57
11.5.7;6. DISCUSSION;59
11.5.8;7. CONCLUSIONS;60
11.5.9;ACKNOWLEDGEMENTS;60
11.5.10;REFERENCES;60
11.6;Chapter 6. Inductive Learning of Reactive Action Models;62
11.6.1;Abstract;62
11.6.2;1 INTRODUCTION;62
11.6.3;2 CONTEXT OF THE LEARNER;62
11.6.4;3 ACTIONS AND TELEO-OPERATORS;63
11.6.5;4 COLLECTING INSTANCES FOR LEARNING;64
11.6.6;5 THE INDUCTIVE LOGIC PROGRAMMING ALGORITHM;65
11.6.7;6 EVALUATION;66
11.6.8;7 RELATED WORK;67
11.6.9;8 FUTURE WORK;68
11.6.10;Acknowledgements;68
11.6.11;References;68
11.7;Chapter 7. Visualizing High-Dimensional Structure with the Incremental Grid Growing Neural Network;70
11.7.1;Abstract;70
11.7.2;1 INTRODUCTION;70
11.7.3;2 INCREMENTAL GRID GROWING;71
11.7.4;3 COMPARISON USING MINIMUM SPANNING TREEDATA;73
11.7.5;4 DEMONSTRATION USING REALWORLD SEMANTIC DATA;73
11.7.6;5 DISCUSSION AND FUTURE WORK;75
11.7.7;6 CONCLUSION;77
11.7.8;References;77
11.8;Chapter 8. Empirical support for Winnow and Weighted-Majority based algorithms: results on a calendar scheduling domain;79
11.8.1;Abstract;79
11.8.2;1 Introduction;79
11.8.3;2 The learning problem;80
11.8.4;3 Description of the algorithms;80
11.8.5;4 Experimental results;82
11.8.6;5 Theoretical results;85
11.8.7;Acknowledgements;87
11.8.8;References;87
11.8.9;Appendix;87
11.9;Chapter 9. Automatic Selection of Split Criterion during Tree Growing Based on Node Location;88
11.9.1;Abstract;88
11.9.2;1 DECISION TREE CONSTRUCTION;88
11.9.3;2 SITUATIONS IN WHICH ACCURACY IS THE BEST SPLITCRITERION;89
11.9.4;3 IMPLICATIONS FOR TREE-GROWING ALGORITHMS;90
11.9.5;4 EMPIRICAL SUPPORT OF THE HYPOTHESIS;90
11.9.6;5 FUTURE DIRECTIONS;94
11.9.7;References;94
11.10;Chapter 10. A Lexically Based Semantic Bias for Theory Revision;96
11.10.1;Abstract;96
11.10.2;1 INTRODUCTION;96
11.10.3;2 BACKGROUND;97
11.10.4;3 CLARUS;97
11.10.5;4 RESULTS;100
11.10.6;5 Discussion;103
11.10.7;6 CONCLUSION;104
11.10.8;Acknowledgments;104
11.10.9;References;104
11.11;Chapter 11. A Comparative Evaluation of Voting and Meta-learning on Partitioned Data;105
11.11.1;Abstract;105
11.11.2;1 Introduction;105
11.11.3;2 Common Voting and Statistical Techniques;105
11.11.4;3 Meta-learning Techniques;106
11.11.5;4 Experiments and Results;107
11.11.6;5 Arbiter Tree;110
11.11.7;6 Discussion;112
11.11.8;7 Concluding Remarks;112
11.11.9;References;113
11.12;Chapter 12. Fast and Efficient Reinforcement Learning with Truncated Temporal Differences;114
11.12.1;Abstract;114
11.12.2;1 INTRODUCTION;114
11.12.3;2 TD-BASED ALGORITHMS;115
11.12.4;3 TRUNCATED TEMPORAL DIFFERENCES;116
11.12.5;4 EXPERIMENTAL STUDIES;120
11.12.6;5 CONCLUSION;120
11.12.7;Acknowledgements;122
11.12.8;References;122
11.13;Chapter 13. K*: An Instance-based Learner Using an Entropie Distance Measure;123
11.13.1;Abstract;123
11.13.2;1 INTRODUCTION;123
11.13.3;2 ENTROPY AS A DISTANCE MEASURE;124
11.13.4;3 K* ALGORITHM;127
11.13.5;4 RESULTS;128
11.13.6;5 CONCLUSIONS;129
11.13.7;Acknowledgments;129
11.13.8;References;129
11.14;Chapter 14. Fast Effective Rule Induction;130
11.14.1;Abstract;130
11.14.2;1 INTRODUCTION;130
11.14.3;2 PREVIOUS WORK;130
11.14.4;3 EXPERIMENTS WITH IREP;132
11.14.5;4 IMPROVEMENTS TO IREP;134
11.14.6;5 CONCLUSIONS;137
11.14.7;References;138
11.15;Chapter 15. Chapter Text Categorization and Relational Learning;139
11.15.1;Abstract;139
11.15.2;1 INTRODUCTION;139
11.15.3;2 TEXT CATEGORIZATION;139
11.15.4;3 AN EXPERIMENTAL TESTBED;140
11.15.5;4 THE LEARNING METHOD;140
11.15.6;5 EVALUATING THERELATIONAL ENCODING;141
11.15.7;6 RELATION SELECTION;143
11.15.8;7 MONOTONICITY CONSTRAINTS;144
11.15.9;8 COMPARISON TO OTHER METHODS;145
11.15.10;9 CONCLUSIONS;146
11.15.11;Acknowledgements;146
11.15.12;References;147
11.16;Chapter 16. Protein Folding: Symbolic Refinement Competes with Neural Networks;148
11.16.1;Abstract;148
11.16.2;1 INTRODUCTION;148
11.16.3;2 THE PROTEIN FOLDING DOMAIN;148
11.16.4;3 RELATED WORK;150
11.16.5;4 KRUST'S SYMBOLIC REFINEMENT;151
11.16.6;5 EXPERIMENTAL RESULTS;153
11.16.7;6 SUMMARY;155
11.16.8;References;156
11.17;Chapter 17. A Bayesian Analysis of Algorithms for Learning Finite Functions;157
11.17.1;Abstract;157
11.17.2;1 Introduction;157
11.17.3;2 Preliminaries;158
11.17.4;3 Algorithms and priors;159
11.17.5;4 Approaches to prior and algorithm selection;161
11.17.6;5 Discussion and future work;162
11.17.7;Acknowledgements;164
11.17.8;References;164
11.18; Chapter 18. Committee-Based Sampling For Training Probabilistic Classifiers;165
11.18.1;Abstract;165
11.18.2;1 INTRODUCTION;165
11.18.3;2 BACKGROUND;166
11.18.4;3 COMMITTEE-BASEDSAMPLING;167
11.18.5;4 HMMS AND PART-OF-SPEECHTAGGING;168
11.18.6;5 COMMITTEE-BASEDSAMPLING FOR HMMS;168
11.18.7;6 EXPERIMENTAL RESULTS;170
11.18.8;7 CONCLUSIONS;171
11.18.9;References;171
11.19;Chapter 19. Learning Prototypical Concept Descriptions;173
11.19.1;Abstract;173
11.19.2;1 INTRODUCTION;173
11.19.3;2 LEARNING PROTOTYPICALDESCRIPTIONS;174
11.19.4;3 EVALUATION;176
11.19.5;4 DISCUSSION AND FUTUREDIRECTIONS;180
11.19.6;Acknowledgments;181
11.19.7;References;181
11.20;Chapter 20. A Case Study of Explanation-Based Control;182
11.20.1;Abstract;182
11.20.2;1 INTRODUCTION;182
11.20.3;2 THE ACROBOT;182
11.20.4;3 THE EBC APPROACH;183
11.20.5;4 A CONTROL THEORY SOLUTION;186
11.20.6;5 THE EBC SOLUTION;186
11.20.7;6 EMPIRICAL EVALUATION;188
11.20.8;7 CONCLUSIONS;189
11.20.9;Acknowledgements;190
11.20.10;References;190
11.21;Chapter 21. Explanation-Based Learning and Reinforcement Learning: A Unified View;191
11.21.1;Abstract;191
11.21.2;1 Introduction;191
11.21.3;2 Methods;193
11.21.4;3 Experiments and Results;196
11.21.5;4 Discussion;198
11.21.6;5 Conclusion;199
11.21.7;Acknowledgements;199
11.21.8;References;199
11.22;Chapter 22. Lessons from Theory Revision Applied to Constructive Induction;200
11.22.1;Abstract;200
11.22.2;1 Introduction;200
11.22.3;2 Context and Related Work;201
11.22.4;3 Demonstrations of Related Work;202
11.22.5;4 Theory-Guided Constructive Induction;205
11.22.6;5 Experiments;206
11.22.7;6 Discussion;207
11.22.8;References;208
11.23;Chapter 23. Supervised and Unsupervised Discretization of Continuous Features;209
11.23.1;Abstract;209
11.23.2;1 Introduction;209
11.23.3;2 Related Work;210
11.23.4;3 Methods;212
11.23.5;4 Results;213
11.23.6;5 Discussion;213
11.23.7;6 Summary;216
11.23.8;References;216
11.24;Chapter 24. Bounds on the Classification Error of the Nearest Neighbor Rule;218
11.24.1;Abstract;218
11.24.2;1 INTRODUCTION;218
11.24.3;2 DEFINITIONS AND THEOREMS;219
11.24.4;3 DISCUSSION AND CONCLUSION;222
11.24.5;Acknowledgements;222
11.24.6;References;222
11.25;Chapter 25. Q-Learning for Bandit Problems;224
11.25.1;Abstract;224
11.25.2;1 INTRODUCTION;224
11.25.3;2 BANDIT PROBLEMS;225
11.25.4;3 THE GITTINS INDEX;226
11.25.5;4 RESTART-IN-STATE-i PROBLEMS AND THE GITTINSINDEX;227
11.25.6;5 ON-LINE ESTIMATION OFGITTINS INDICES VIAQ-LEARNING;228
11.25.7;6 EXAMPLES;229
11.25.8;7 CONCLUSION;231
11.25.9;Acknowledgements;232
11.25.10;References;232
11.26;Chapter 26. Distilling Reliable Information From Unreliable Theories;233
11.26.1;Abstract;233
11.26.2;1 INTRODUCTION;233
11.26.3;2 IDENTIFYING STABLE EXAMPLES;233
11.26.4;3 USING STABILITY TO ELIMINATE NOISE;236
11.26.5;4 RESULTS;237
11.26.6;5 DISCUSSION;238
11.26.7;Acknowledgements;239
11.26.8;References;239
11.27;Chapter 27. A Quantitative Study of Hypothesis Selection;241
11.27.1;Abstract;241
11.27.2;1 Introduction;241
11.27.3;2 The Hypothesis Selection Problem;242
11.27.4;3 PAO Algorithms for Hypothesis Selection;242
11.27.5;4 Trading Off Exploitation and Exploration;245
11.27.6;5 Implication to Probabilistic Hill-Climbing;247
11.27.7;6 Related Work;248
11.27.8;7 Conclusion;248
11.27.9;Acknowledgements;249
11.27.10;References;249
11.28;Chapter 28. Learning proof heuristics by adapting parameters;250
11.28.1;Abstract;250
11.28.2;1 INTRODUCTION;250
11.28.3;2 FUNDAMENTALS;251
11.28.4;3 LEARNING PARAMETERS WITH A GA;252
11.28.5;4 THE UKB-PROCEDURE;253
11.28.6;5 DESIGNING A FITNESS FUNCTION;254
11.28.7;6 EXPERIMENTAL RESULTS;256
11.28.8;7 DISCUSSION;257
11.28.9;Acknowledgements;258
11.28.10;References;258
11.29;Chapter 29. Efficient Algorithms for Finding Multi-way Splits for Decision Trees;259
11.29.1;Abstract;259
11.29.2;1 Introduction;259
11.29.3;2 Computing Multi-Split Partitions;260
11.29.4;3 Experiments;262
11.29.5;4 Conclusion;265
11.29.6;Acknowledgements;266
11.29.7;References;266
11.30;Chapter 30. Ant-Q: A Reinforcement Learning approach to the traveling salesman problem;267
11.30.1;Abstract;267
11.30.2;1 INTRODUCTION;267
11.30.3;2 THE ANT-Q FAMILY OF ALGORITHMS;267
11.30.4;3 AN EXPERIMENTAL COMPARISONOF ANT-Q ALGORITHMS;268
11.30.5;4. TWO INTERESTING PROPERTIES OF ANT-Q;271
11.30.6;5 COMPARISONS WITH OTHER HEURISTICS AND SOME RESULTS ON DIFFICULT PROBLEMS;273
11.30.7;6 CONCLUSIONS;273
11.30.8;Acknowledgements;275
11.30.9;References;275
11.31;Chapter 31. Stable Function Approximation in Dynamic Programming;276
11.31.1;Abstract;276
11.31.2;1 INTRODUCTION AND BACKGROUND;276
11.31.3;2 DEFINITIONS AND BASIC THEOREMS;277
11.31.4;3 MAIN RESULTS: DISCOUNTED PROCESSES;278
11.31.5;4 NONDISCOUNTED PROCESSES;279
11.31.6;5 CONVERGING TO WHAT;281
11.31.7;6 EXPERIMENTS: HILL-CAR THE HARD WAY;281
11.31.8;7 CONCLUSIONS AND FURTHER RESEARCH;282
11.31.9;References;282
11.32;Chapter 32. The Challenge of Revising an Impure Theory;284
11.32.1;Abstract;284
11.32.2;1 Introduction;284
11.32.3;2 Framework;285
11.32.4;3 Computational Complexity;287
11.32.5;4 Prioritizing Default Theories;289
11.32.6;5 Conclusion;290
11.32.7;References;291
11.33;Chapter 33. Symbiosis in Multimodal Concept Learning;293
11.33.1;Abstract;293
11.33.2;1 INTRODUCTION;293
11.33.3;2 NICHE TECHNIQUES;294
11.33.4;3 SYSTEM OVERVIEW;294
11.33.5;4 INDIVIDUAL AND GROUP OPERATORS;296
11.33.6;5 FITNESS FUNCTION;297
11.33.7;6 COMPARISONS TO OTHER SYSTEMS;297
11.33.8;7 RESULTS;298
11.33.9;8 CONCLUSIONS;299
11.33.10;Acknowledgements;299
11.33.11;References;300
11.34;Chapter 34. Tracking the Best Expert;301
11.34.1;Abstract;301
11.34.2;1 INTRODUCTION;301
11.34.3;2 PRELIMINARIES;303
11.34.4;3 THE ALGORITHMS;303
11.34.5;4 FIXED SHARE ANALYSIS;304
11.34.6;5 VARIABLE SHARE ANALYSIS;305
11.34.7;6 EXPERIMENTAL RESULTS;308
11.34.8;References;309
11.35;Chapter 35. Reinforcement Learning by Stochastic Hill Climbing on Discounted Reward;310
11.35.1;Abstract;310
11.35.2;1 Introduction;310
11.35.3;2 Domain;310
11.35.4;3 Difficulties of Q-learning;312
11.35.5;4 Hill Climbing for Reinforcement Learning;312
11.35.6;5 Experiments;314
11.35.7;6 Discussion;316
11.35.8;7 Conclusion;316
11.35.9;Appendix;317
11.35.10;References;318
11.36;Chapter 36. Automatic Parameter Selection by Minimizing Estimated Error;319
11.36.1;Abstract;319
11.36.2;1 Introduction;319
11.36.3;2 The Parameter Selection Problem;320
11.36.4;3 The Wrapper Method;321
11.36.5;4 Automatic Parameter Selection for C4.5;322
11.36.6;5 Experiments with C4.5-AP;322
11.36.7;6 Related Work;325
11.36.8;7 Conclusion;326
11.36.9;Acknowledgments;326
11.36.10;References;326
11.37;Chapter 37. Error-Correcting Output Coding Corrects Bias and Variance;328
11.37.1;Abstract;328
11.37.2;1 Introduction;328
11.37.3;2 Definitions and Previous Work;329
11.37.4;3 Decomposing the Error Rate into Bias and Variance Components;331
11.37.5;4 ECOC and Voting;332
11.37.6;5 ECOC Reduces Variance and Bias;334
11.37.7;6 Bias Differences are Caused by Non-Local Behavior;334
11.37.8;7 Discussion and Conclusions;335
11.37.9;Acknowledgements;336
11.37.10;References;336
11.38;Chapter 38. Learning to Make Rent-to-Buy Decisions with Systems Applications;337
11.38.1;Abstract;337
11.38.2;1 Introduction;337
11.38.3;2 Definitions and Main Analytical Results;339
11.38.4;3 Algorithm Ae;339
11.38.5;4 Analysis;340
11.38.6;5 Adaptive Disk Spindown andRent-to-Buy;343
11.38.7;6 Experimental Results;343
11.38.8;Acknowledgements;344
11.38.9;References;344
11.39;Chapter 39. NewsWeeder: Learning to Filter Netnews;346
11.39.1;Abstract;346
11.39.2;1 INTRODUCTION;346
11.39.3;2 APPROACH;347
11.39.4;3 RESULTS;350
11.39.5;4 CONCLUSION;353
11.39.6;5 FUTURE WORK;353
11.39.7;Acknowledgments;353
11.39.8;References;353
11.40;Chapter 40. Hill Climbing Beats Genetic Search on a Boolean Circuit Synthesis Problem of Koza's;355
11.40.1;Abstract;355
11.40.2;1 Introduction;355
11.40.3;2 Genetic Programming;355
11.40.4;3 GP vs RGAT;356
11.40.5;4 Hill Climbing;356
11.40.6;5 Interpretation and Speculation;356
11.40.7;6 References;357
11.41;Chapter 41. Case-Based Acquisition of Place Knowledge;359
11.41.1;Abstract;359
11.41.2;1. Introduction and Basic Concepts;359
11.41.3;2. The Evidence Grid Representation;360
11.41.4;3. Case-Based Recognition of Places;361
11.41.5;4. Case-Based Learning of Places;362
11.41.6;5. Experiments with Place Learning;363
11.41.7;6. Related Work on Spatial Learning;365
11.41.8;7. Directions for Future Work;366
11.41.9;Acknowledgements;367
11.41.10;References;367
11.42;Chapter 42. Comparing Several Linear-threshold Learning Algorithms on Tasks Involving Superfluous Attributes;368
11.42.1;Abstract;368
11.42.2;1 INTRODUCTION;368
11.42.3;2 THE LEARNING TASKS;369
11.42.4;3 THE ALGORIT;369
11.42.5;4 DESCRIPTION OF THE PLOTS;371
11.42.6;5 CHECKING PROCEDURES;371
11.42.7;6 OBSERVATIONS;375
11.42.8;7 CONCLUSION;376
11.43;Chapter 43. Learning policies for partially observable environments: Scaling up;377
11.43.1;Abstract;377
11.43.2;1 INTRODUCTION;377
11.43.3;2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES;378
11.43.4;3 SOME SOLUTION METHODS FOR POMDP's;379
11.43.5;4 HANDLING LARGER POMDP's: A HYBRID APPROACH;381
11.43.6;5 MORE ADVANCED REPRESENTATIONS;383
11.43.7;References;384
11.44;Chapter 44. Increasing the performance and consistency of classification trees by using the accuracy criterion at the leaves;386
11.44.1;Abstract;386
11.44.2;1 Introduction and Outline;386
11.44.3;2 Comparison of accuracy characteristics of split criteria;387
11.44.4;3 Revised Tree Growing Strategy;388
11.44.5;4 Empirical Results with revised strategy;389
11.44.6;Acknowledgements;390
11.44.7;References;390
11.45;Chapter 45. Efficient Learning with Virtual Threshold Gates;393
11.45.1;Abstract;393
11.45.2;1 Introduction;393
11.45.3;2 Preliminaries;395
11.45.4;3 The Winnow algorithms;395
11.45.5;4 Efficient On-line Learning of Simple Geometrical Objects When Dimension is Variable;396
11.45.6;5 Efficient On-line Learning of Simple Geometrical Objects When Dimension is Fixed;399
11.45.7;6 Conclusions;399
11.45.8;Acknowledgements;400
11.45.9;References;400
11.46;Chapter 46. Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State;402
11.46.1;Abstract;402
11.46.2;1 INTRODUCTION;402
11.46.3;2 UTILE SUFFIX MEMORY;404
11.46.4;3 DETAILS OF THE ALGORITHM;404
11.46.5;4 EXPERIMENTAL RESULTS;406
11.46.6;5 RELATED WORK;409
11.46.7;6 DISCUSSION;409
11.46.8;Acknowledgments;410
11.46.9;References;410
11.47;Chapter 47. Efficient Learning from Delayed Rewards through Symbiotic Evolution;411
11.47.1;Abstract;411
11.47.2;1 Introduction;411
11.47.3;2 Neuro-Evolution;412
11.47.4;3 Symbiotic Evolution;412
11.47.5;4 The SANE Method;412
11.47.6;5 The Inverted Pendulum Problem;413
11.47.7;6 Population Dynamics in SANE;417
11.47.8;7 Related Work;417
11.47.9;8 Extending SANE;418
11.47.10;9 Conclusion;418
11.47.11;Acknowledgments;418
11.47.12;References;418
11.48;Chapter 48. Free to Choose: Investigating the Sample Complexity of Active Learning of Real Valued Functions;420
11.48.1;Abstract;420
11.48.2;1 INTRODUCTION;420
11.48.3;2 MODEL AND PRELIMINARIES;421
11.48.4;3 COLLECTING EXAMPLES: SAMPLING STRATEGIES;421
11.48.5;4 EXAMPLE 1: MONOTONIC FUNCTIONS;422
11.48.6;5 EXAMPLE 2: A CLASS WITH BOUNDED FIRST DERIVATIVE;424
11.48.7;6 CONCLUSIONS AND EXTENSIONS;426
11.48.8;Acknowledgements;426
11.48.9;References;426
11.49;Chapter 49. On learning Decision Committees;428
11.49.1;Abstract;428
11.49.2;1 Introduction;428
11.49.3;2 Definitions and theoretical results;429
11.49.4;3 Learning by DC{-i,0,i}: the IDC algorithm;430
11.49.5;4 Experiments;432
11.49.6;5 Discussion;433
11.49.7;References;434
11.50;Chapter 50. Inferring Reduced Ordered Decision Graphs of Minimum Description Length;436
11.50.1;Abstract;436
11.50.2;1 INTRODUCTION;436
11.50.3;2 DECISION TREES AND DECISION GRAPHS;436
11.50.4;3 MANIPULATING DISCRETE FUNCTIONS USING RODGS;437
11.50.5;4 MINIMUM MESSAGE LENGTH AND ENCODING OF RODGS;438
11.50.6;5 DERIVING AN RODG OF MINIMAL COMPLEXITY;439
11.50.7;6 EXPERIMENTS;442
11.50.8;7 CONCLUSIONS AND FUTURE WORK;444
11.50.9;References;444
11.51;Chapter 51. On Pruning and Averaging Decision Trees;445
11.51.1;Abstract;445
11.51.2;1 INTRODUCTION;445
11.51.3;2. OPTIMAL PRUNING;445
11.51.4;3 TREE AVERAGING;445
11.51.5;4 WEIGHTS FOR DECISION TREES;447
11.51.6;5 COMPLEXITY OF FANNING;448
11.51.7;6 COMPARISON OF AVERAGING AND PRUNING;449
11.51.8;7 DISCUSSION;450
11.51.9;8 FANNING OVER GRAPHS AND PRODUCTION RULES;451
11.51.10;9 CONCLUSION;451
11.51.11;References;452
11.52;Chapter 52. Efficient Memory-Based Dynamic Programming;453
11.52.1;Abstract;453
11.52.2;1 INTRODUCTION;453
11.52.3;2 MEMORY-BASED APPROACH;454
11.52.4;3 EXPERIMENTAL DEMONSTRATION;457
11.52.5;4 DISCUSSION;459
11.52.6;5 CONCLUSION;460
11.52.7;Acknowledgements;460
11.52.8;References;460
11.53;Chapter 53. Using Multidimensional Projection to Find Relations;462
11.53.1;Abstract;462
11.53.2;1 MOTIVATION;462
11.53.3;2 BASIC NOTIONS: RELATION AND PROJECTION;463
11.53.4;3 MULTIDIMENSIONAL RELATIONAL PROJECTION;463
11.53.5;4 A PROTOTYPE IMPLEMENTATION: MRP;464
11.53.6;5 EXPERIMENTAL RESULTS;466
11.53.7;6 RELATED RESEARCH;469
11.53.8;7 CONCLUSIONS;469
11.53.9;Acknowledgements;470
11.53.10;References;470
11.54;Chapter 54. Compression-Based Discretization of Continuous Attributes;471
11.54.1;Abstract;471
11.54.2;1 INTRODUCTION;471
11.54.3;2 AN MDL MEASURE FOR DISCRETIZED ATTRIBUTES;472
11.54.4;3 ALGORITHMIC USAGE;473
11.54.5;4 EXPERIMENTS AND EMPIRICAL RESULTS;474
11.54.6;5 CONCLUSIONS AND FURTHER RESEARCH;477
11.54.7;Acknowledgements;478
11.54.8;References;478
11.55;Chapter 55. MDL and Categorical Theories (Continued);479
11.55.1;Abstract;479
11.55.2;1 INTRODUCTION;479
11.55.3;2 CLASS DESCRIPTION THEORIES AND MDL;480
11.55.4;3 AN ANOMALY AND A PREVIOUS SOLUTION;481
11.55.5;4 A NEW SOLUTION;481
11.55.6;5 APPLYING THE SCHEME TO C4.5RULES;482
11.55.7;6 RELATED RESEARCH;483
11.55.8;7 CONCLUSION;484
11.55.9;References;484
11.56;Chapter 56. For Every Generalization Action, Is There Reallyan Equal and Opposite Reaction? Analysis of the Conservation Law for Generalization Performance;486
11.56.1;Abstract;486
11.56.2;1 INTRODUCTION;486
11.56.3;2 CONSERVATION LAWREVISITED;486
11.56.4;3 AN ALTERNATE MEASURE OF GENERALIZATION;489
11.56.5;4 DISCUSSION;492
11.56.6;Acknowledgments;493
11.56.7;References;493
11.57;Chapter 57. Active Exploration and Learning in Real-Valued Spaces using Multi-Armed Bandit Allocation Indices;495
11.57.1;Abstract;495
11.57.2;1 Introduction and Motivation;495
11.57.3;2 Combining Classification Tree Algorithms with Gittins Indices;498
11.57.4;3 The Grasping Task;499
11.57.5;4 Discussion;500
11.57.6;5 Conclusion;501
11.57.7;Acknowledgments;501
11.57.8;References;502
11.58;Chapter 58. Discovering Solutions with Low Kolmogorov Complexity and High Generalization Capability;503
11.58.1;Abstract;503
11.58.2;1 INTRODUCTION;503
11.58.3;2 BASIC CONCEPTS;504
11.58.4;3 PROBABILISTIC SEARCH;505
11.58.5;4 "SIMPLE" NEURAL NETS;507
11.58.6;5 INCREMENTAL LEARNING;509
11.58.7;6 ACKNOWLEDGEMENTS;511
11.58.8;References;511
11.59;Chapter 59. A Comparison of Induction Algorithms for Selective andnon-Selective Bayesian Classifiers;512
11.59.1;Abstract;512
11.59.2;1 INTRODUCTION;512
11.59.3;2 NAIVE BAYESIAN CLASSIFIERS;513
11.59.4;3 BAYESIAN NETWORK CLASSIFIERS;513
11.59.5;5 DISCUSSION;516
11.59.6;6 RELATED WORK;518
11.59.7;7 CONCLUSION;519
11.59.8;Acknowledgement;520
11.59.9;References;520
11.60;Chapter 60. Retrofitting Decision Tree Classifiers Using Kernel Density Estimation;521
11.60.1;Abstract;521
11.60.2;1. INTRODUCTION;521
11.60.3;2 A REVIEW OF KERNEL DENSITY ESTIMATION;522
11.60.4;3 CLASSIFICATION WITH KERNEL DENSITY ESTIMATES;523
11.60.5;4 DECISION TREE DENSITY ESTIMATORS;523
11.60.6;5 DETAILS ON DECISION TREE DENSITY ESTIMATORS;524
11.60.7;6 EXPERIMENTAL RESULTS;524
11.60.8;7 RELATED WORK, EXTENSIONS, AND DISCUSSION;527
11.60.9;8 CONCLUSION;528
11.61;Chapter 61. Automatic Speaker Recognition: An Application of Machine Learning;530
11.61.1;Abstract;530
11.61.2;1 INTRODUCTION;530
11.61.3;2 PREPROCESSING;531
11.61.4;3 SPEAKER CLASSIFICATION;532
11.61.5;4 EXPERIMENTAL RESULTS;533
11.61.6;5 CONCLUSION;536
11.61.7;Acknowledgments;536
11.61.8;References;536
11.62;Chapter 62. An Inductive Learning Approach to Prognostic Prediction;537
11.62.1;Abstract;537
11.62.2;1 INTRODUCTION;537
11.62.3;2 RECURRENCE SURFACE APPROXIMATION;538
11.62.4;3 CLINICAL APPLICATION;542
11.62.5;4 CONCLUSIONS AND FUTURE WORK;544
11.63;Chapter 63. TD Models: Modeling the World at a Mixture of Time Scales;546
11.63.1;Abstract;546
11.63.2;1 Multi-Scale Planning and Modeling;546
11.63.3;2 Reinforcement Learning;547
11.63.4;3 The Prediction Problem;547
11.63.5;4 A Generalized Bellman Equation;548
11.63.6;5 n-Step Models;548
11.63.7;6 Intermixing Time Scales;548
11.63.8;7 ß-Models;549
11.63.9;8 Theoretical Results;550
11.63.10;9 TD(.) Learning of ß-models;551
11.63.11;10 A Wall-Following Example;551
11.63.12;11 A Hidden-State Example;552
11.63.13;12 Adding Actions (Future Work);553
11.63.14;13 Conclusions;553
11.63.15;Acknowledgments;554
11.63.16;References;554
11.64;Chapter 64. Learning Collection Fusion Strategies for Information Retrieval;555
11.64.1;Abstract;555
11.64.2;1 INTRODUCTION;555
11.64.3;2 UNDERPINNINGS;556
11.64.4;3 LEARNING COLLECTION FUSION STRATEGIES;558
11.64.5;4 EXPERIMENTS;561
11.64.6;5 DISCUSSION AND CONCLUSIONS;562
11.64.7;References;563
11.65;Chapter 65. Learning by Observation and Practice:An Incremental Approach for Planning Operator Acquisition;564
11.65.1;Abstract;564
11.65.2;1 Introduction;564
11.65.3;2 Learning architecture overview;565
11.65.4;3 Issues of learning planning operators;565
11.65.5;4 Learning algorithm descriptions;567
11.65.6;5 Empirical results and analysis;570
11.65.7;Acknowledgements;571
11.65.8;References;572
11.66;Chapter 66. Learning with Rare Cases and Small Disjuncts;573
11.66.1;Abstract;573
11.66.2;1. INTRODUCTION;573
11.66.3;2. BACKGROUND;573
11.66.4;3. WHY ARE SMALL DISJUNCTS SO ERROR PRONE?;574
11.66.5;4. THE PROBLEM DOMAINS;574
11.66.6;5. THE EXPERIMENTS;575
11.66.7;6. RESULTS AND DISCUSSION;576
11.66.8;7. FUTURE RESEARCH;579
11.66.9;8. CONCLUSION;579
11.66.10;Acknowledgements;580
11.66.11;References;580
11.67;Chapter 67. Horizontal Generalization;581
11.67.1;Abstract;581
11.67.2;1 INTRODUCTION;581
11.67.3;2 FAN GENERALIZERS;582
11.67.4;3 COMPUTER EXPERIMENTS;582
11.67.5;4 GENERAL COMMENTS ON FG's;589
11.67.6;Acknowledgements;589
11.67.7;References;589
11.68;Chapter 68. Learning Hierarchies from Ambiguous Natural Language Data;590
11.68.1;Abstract;590
11.68.2;1 Introduction;590
11.68.3;2 Background;591
11.68.4;3 Learning Translation Rules with FOCL;591
11.68.5;4 Learning a Semantic Hierarchy from scratch;593
11.68.6;5 Updating an existing hierarchy;594
11.68.7;7 Limitation;597
11.68.8;8 Related Work;597
11.68.9;9 Conclusion;597
11.68.10;Acknowledgement;598
11.68.11;References;598
12;PART 2: INVITED TALKS;600
12.1;Chapter 69. Machine Learning and Information Retrieval;602
12.2;Chapter 70. Learning With Bayesian Networks;603
12.2.1;References;603
12.3;Chapter 71. Learning for Automotive Collision Avoidance and Autonomous Control;604
13;Author Index;606




