Puppe | Systematic Introduction to Expert Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, 352 Seiten, eBook

Puppe Systematic Introduction to Expert Systems

Knowledge Representations and Problem-Solving Methods
1993
ISBN: 978-3-642-77971-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Knowledge Representations and Problem-Solving Methods

E-Book, Englisch, 352 Seiten, eBook

ISBN: 978-3-642-77971-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



At present one of the main obstacles to a broader
application of expert systems is the lack of a theory to
tell us which problem-solving methods areavailable for a
given problem class. Such a theory could lead to significant
progress in the following central aims of the expert system
technique:
- Evaluating the technical feasibility of expert system
projects: This depends on whether there is a suitable
problem-solving method, and if possible a corresponding
tool, for the given problem class.
- Simplifying knowledge acquisition and maintenance: The
problem-solving methods provide direct assistance as
interpretation models in knowledge acquisition. Also, they
make possible the development of problem-specific expert
system tools with graphical knowledge acquisition
components, which can be used even by experts without
programming experience.
- Making use of expert systems as a knowledge medium: The
structured knowledge in expert systems can be used not only
for problem solving but also for knowledge communication and
tutorial purposes.
With such a theory in mind, this book provides a systematic
introduction to expert systems. It describes the basic
knowledge representations and the present situation with
regard tothe identification, realization, and integration
of problem-solving methods for the main problem classes of
expert systems: classification (diagnostics), construction,
and simulation.

Puppe Systematic Introduction to Expert Systems jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


I Introduction.- 1 Characterization and History of Expert Systems.- 1.1 Characterization.- 1.2 History.- 2 Programming Languages and Expert System Tools.- 2.1 Knowledge Acquisition Problems.- 2.2 Knowledge Acquisition with Specialized Programming Environments.- 2.3 Architecture of Expert Systems.- 3 Use and Usability of Expert Systems.- 3.1 Potential Benefits and Modes of Use.- 3.2 Expert Systems as Knowledge Media.- 3.3 Criteria for Expert System Domains.- 3.4 Summary.- II Basic Techniques of Knowledge Representation.- 4 Logic.- 4.1 Predicate Logic.- 4.2 Properties of Logic Calculi.- 4.3 PROLOG.- 4.4 Summary.- 5 Rules.- 5.1 Forward Chaining.- 5.2 Backward Chaining.- 5.3 Complexity of the Precondition.- 5.4 Rule Structuring.- 5.5 Summary.- 6 Objects/Frames.- 6.1 Example: FRL.- 6.2 Active Objects.- 6.3 Cognitive Meaning of Frames.- 6.4 Automatic Classification in KL-ONE Languages.- 6.5 Frames and Problem-Solving Types.- 6.6 Summary.- 7 Constraints.- 7.1 Types of Constraints and Propagation Algorithms.- 7.2 Solution of a Non-Trivial Constraint Problem.- 7.3 Discussion of the Solution.- 7.4 Formal Characterization of Simple Constraint Systems.- 7.5 Summary.- 8 Probabilistic Reasoning.- 8.1 Bayes’ Theorem.- 8.2 The Dempster-Shafer Theory.- 8.3 The INTERNIST Model.- 8.4 The MYCIN Model.- 8.5 The MED1 Model.- 8.6 Summary.- 9 Non-Monotonic Reasoning.- 9.1 JTMS with Direct Justifications.- 9.2 ATMS with Basic Assumptions as Justifications.- 9.3 Summary.- 10 Temporal Reasoning.- 10.1 Exact Time Relations: VM and MED2.- 10.2 Inexact Quantitative Time Relations: TMM of McDermott.- 10.3 Qualitative Relations: the Time Calculus of Allen.- 10.4 Summary.- III Problem Classes and Problem-Solving Methods.- 11 Previous Approaches to Problem Classification.- 11.1 The Approach of Stefik et al. and Hayes-Roth et al.- 11.2 The Approach of Clancey.- 11.3 The Approach of Breuker et al.- 11.4 The Approach of Chandrasekaran.- 11.5 The Approach of Harmon.- 11.6 The Approach of McDermott.- 11.7 Discussion.- 12 Principles of Problem-Solving Methods.- 12.1 Survey of Problem-Solving Methods.- 12.2 Restriction of Use of Variables.- 12.3 Structure of Knowledge Representation.- 12.4 Structure of Knowledge Manipulation.- 12.5 Structure of Knowledge Acquisition.- Classification.- 13 Survey of the Problem-Solving Type Classification.- 13.1 Domains.- 13.2 Problem Types.- 13.3 Analysis of Problem Characteristics.- 13.4 Problem-Solving Methods.- 14 Simple Classification.- 14.1 Decision Trees.- 14.2 Decision Tables.- 14.3 State of the Art.- 15 Heuristic Classification.- 15.1 Knowledge Representation.- 15.2 Knowledge Manipulation.- 15.3 Knowledge Acquisition.- 15.4 State of the Art.- 15.5 Example: CLASSIKA.- 16 Heuristic Classification: Additional Mechanisms.- 16.1 Treatment of Uncertain Data and Solution Classes.- 16.2 Treatment of Subjective Observations.- 16.3 Recognition of False Observations.- 16.4 Treatment of Time-Dependent Data.- 16.5 Belief Revision.- 16.6 Treatment of Parametrized Data and Solutions.- 16.7 Treatment of Multiple Solutions.- 16.8 Combined Recommendations for Multiple Solutions.- 17 Set-Covering Classification.- 17.1 Knowledge Representation.- 17.2 Knowledge Manipulation.- 17.3 Knowledge Acquisition.- 17.4 State of the Art.- 17.5 Example: FEMO.- 18 Functional Classification.- 18.1 Knowledge Representation.- 18.2 Knowledge Manipulation.- 18.3 Knowledge Acquisition.- 18.4 State of the Art.- 18.5 Example: SIMUL.- 19 Statistical Classification.- 19.1 Knowledge Representation.- 19.2 Knowledge Manipulation.- 19.3 Knowledge Acquisition.- 19.4 State of the Art.- 19.5 Variants of Bayes’ Theorem.- 19.6 Example: FAKTA.- 20 Case-Comparing Classification.- 20.1 Knowledge Representation.- 20.2 Knowledge Manipulation.- 20.3 Knowledge Acquisition.- 20.4 State of the Art.- 20.5 Example: CcC.- V Construction.- 21 Review of the Problem-Solving Type Construction.- 21.1 Domains.- 21.2 Problem Types.- 21.3 Analysis of Problem Characteristics.- 21.4 Problem-Solving Methods.- 22 Skeletal Construction.- 22.1 Knowledge Representation.- 22.2 Knowledge Manipulation.- 22.3 Knowledge Acquisition.- 22.4 State of the Art.- 22.5 Variants of Skeletal Construction: Generate and Test.- 22.6 Heuristic Classification and Skeletal Construction.- 23 Propose and Revise.- 23.1 Knowledge Representation.- 23.2 Knowledge Manipulation.- 23.3 Knowledge Acquisition.- 23.4 State of the Art.- 23.5 Variant for Therapy Planning by Parameter Adjustment.- 23.6 Heuristic Classification and Propose and Revise.- 24 Propose and Exchange.- 24.1 Knowledge Representation.- 24.2 Knowledge Manipulation.- 24.3 Knowledge Acquisition.- 24.4 State of the Art.- 24.5 Example: COKE and REST.- 25 Least-Commitment Strategy.- 25.1 Knowledge Representation.- 25.2 Knowledge Manipulation.- 25.3 Knowledge Acquisition.- 25.4 State of the Art.- 25.5 Example: ExAP.- 26 Model-Based Planning.- 26.1 Non-Hierarchical Planning.- 26.2 Hierarchical Planning.- 26.3 Non-Linear Planning.- 27 Case-Comparing Construction.- 28 Partial Integration of Construction Methods.- 28.1 Knowledge Representation.- 28.2 Knowledge Manipulation.- 28.3 Knowledge Acquisition.- 28.4 State of the Art.- VI Simulation.- 29 Review of the Problem-Solving Type Simulation.- 29.1 Domains.- 29.2 Classification According to Problem Types.- 29.3 Analysis of Problem Characteristics.- 29.4 Problem-Solving Methods.- 30 Single-Phase Simulation.- 31 Numerical Multiple-Phase Simulation.- 31.1 Knowledge Representation.- 31.2 Knowledge Manipulation.- 31.3 Knowledge Acquisition.- 31.4 State of the Art.- 32 Qualitative Multiple-Phase Simulation.- 32.1 Knowledge Representation.- 32.2 Knowledge Manipulation.- 32.3 Knowledge Acquisition.- 32.4 State of the Art.- VII Integration of Problem-Solving Methods.- 33 Basic Ideas for the Integration of Problem-Solving Methods.- 33.1 Domains.- 33.2 Levels of Integration.- 33.3 References to Objects in the Knowledge Representation.- 33.4 Problem Solving.- 33.5 Knowledge Acquisition.- 33.6 Explainability.- 33.7 Data Collection.- 33.8 Programming.- 33.9 Survey of the Integration of Problem-Solving Methods.- 34 Integration of Classification Methods.- 34.1 Strengths and Weaknesses of the Problem-Solving Methods.- 34.2 Knowledge Representation.- 34.3 Knowledge Manipulation.- 34.4 Knowledge Acquisition.- 34.5 Explainability.- 34.6 Data Collection.- 34.7 Programming.- 34.8 State of the Art.- 35 Aspects of the Overall Integration.- 35.1 Survey.- 35.2 Decision-Making in Medicine.- 35.3 Tendering, Configuration and Maintenance of Technical Systems.- 35.4 Job and Production Planning and Quality Control.- Appendix: Survey of Knowledge Representation Formalisms.- References.- System Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.