E-Book, Englisch, 136 Seiten
Reihe: Springer Theses
Putz Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles
1. Auflage 2017
ISBN: 978-3-319-66447-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 136 Seiten
Reihe: Springer Theses
ISBN: 978-3-319-66447-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy.
Stefan Putz completed his Ph.D. at TU Wien in the field of solid state cavity QED. As postdoctoral research associate at Princeton University he continues his research on hybrid quantum systems and novel circuit QED architectures.
Autoren/Hrsg.
Weitere Infos & Material
1;Supervisor’s Foreword;7
2;Abstract;9
3;Acknowledgements;11
4;Contents;13
5;Symbols;16
6;1 Introduction and Outline;18
6.1;1.1 Outline;19
6.2;References;20
7;2 Confined Electromagnetic Waves---Cavities;24
7.1;2.1 Electromagnetic Radiation;24
7.1.1;2.1.1 Mode Expansion in Free Space;24
7.1.2;2.1.2 Modes Inside a Cavity;25
7.2;2.2 Single Cavity Modes---Harmonic Oscillators;27
7.2.1;2.2.1 Canonical Variables of the Electromagnetic Field;27
7.2.2;2.2.2 Drive and Dissipation of a Classical Oscillator;28
7.2.3;2.2.3 Quantum Harmonic Oscillator;30
7.3;2.3 Electrical Oscillators---``From Classical to Quantum'';32
7.3.1;2.3.1 Quantization of a LC Oscillator;32
7.3.2;2.3.2 Drive and Dissipation in a Classical LC Oscillator;34
7.3.3;2.3.3 Quantum Mechanical Description of a Real LC Cavity;37
7.4;References;40
8;3 Spins in the Cavity---Cavity QED;41
8.1;3.1 Single Spin in the Cavity;41
8.1.1;3.1.1 Cavity Spin Interaction;42
8.1.2;3.1.2 The Jaynes Cummings Model;44
8.1.3;3.1.3 Dressed States/Polariton Modes;46
8.2;3.2 Ensembles of Spins in the Cavity;49
8.2.1;3.2.1 Three Spins in the Cavity;49
8.2.2;3.2.2 N Spins in the Cavity;54
8.2.3;3.2.3 The Dicke Model;56
8.2.4;3.2.4 Low Excitation Limit;59
8.3;3.3 Coupling to Inhomogeneous Spectral Broadened Spin Ensembles;60
8.3.1;3.3.1 Equidistant Discretized Spin Ensembles;61
8.3.2;3.3.2 Non-equidistant Discretized Spin Ensembles;63
8.4;References;64
9;4 Experimental Implementation---Solid-State Hybrid Quantum System;66
9.1;4.1 Micro-Wave Cavities;66
9.1.1;4.1.1 Distributed Electrical Resonators;66
9.1.2;4.1.2 Lumped Electrical Resonators;70
9.2;4.2 Nitrogen Vacancy Center Spin Ensembles;72
9.2.1;4.2.1 Nitrogen Vacancy Center Level Structure;73
9.2.2;4.2.2 Thermal Polarization and Spin-Spin Interactions;74
9.3;4.3 Experimental Setup;76
9.4;4.4 Measurement Scheme;78
9.4.1;4.4.1 Up and Down Conversion;79
9.4.2;4.4.2 Signal Averaging;80
9.5;References;82
10;5 Collective Spin States Coupled to a Single Mode Cavity---Strong Coupling;85
10.1;5.1 Strong Coupling;85
10.1.1;5.1.1 ``Vacuum'' Rabi Splitting;86
10.1.2;5.1.2 Dispersive Measurements;88
10.2;5.2 Rabi Oscillations;90
10.2.1;5.2.1 Linear Rabi Oscillations;90
10.2.2;5.2.2 Non-linear Rabi Oscillations;92
10.3;5.3 Conclusion;93
10.4;References;94
11;6 Spin Ensembles and Decoherence in the Strong-Coupling Regime---Cavity Protection;96
11.1;6.1 Introduction;96
11.2;6.2 The Principle of Cavity Protection;97
11.3;6.3 Experimental Verification;100
11.4;6.4 Conclusion;104
11.5;References;104
12;7 Engineering of Long-Lived Collective DarkStates---Spectral Hole Burning;106
12.1;7.1 Introduction;106
12.1.1;7.1.1 The Principle of Spectral Hole Burning;107
12.1.2;7.1.2 Collective Spin Dark States;108
12.2;7.2 Experimental Implementation of Spectral Hole Burning;109
12.2.1;7.2.1 Spectral Hole Burning;109
12.2.2;7.2.2 Dark State Spectroscopy;110
12.2.3;7.2.3 Dark State Dynamics;112
12.3;7.3 Conclusion;114
12.4;References;114
13;8 Amplitude Bistability with Inhomogeneous Spin Broadening---Driven Tavis-Cummings;116
13.1;8.1 Introduction;116
13.2;8.2 The Principle of Bistability;117
13.3;8.3 Experiential Observation of Amplitude Bistability;120
13.4;8.4 Conclusion;122
13.5;References;123
14;9 Spin Echo Spectroscopy---Spin Refocusing;125
14.1;9.1 Introduction;125
14.2;9.2 Experimental Implementation;126
14.2.1;9.2.1 Car-Purcell-Meiboom-Gill Echo Train;126
14.2.2;9.2.2 Stimulated Spin Echo;127
14.3;9.3 Conclusion;129
14.4;References;129
15;10 Conclusion and Outlook;131
15.1;References;134
16;Appendix Curriculum Vitae;135




