Buch, Englisch, Band 45, 232 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 517 g
Reihe: Oxford Logic Guides
Proof Theory, Semantics, and Control
Buch, Englisch, Band 45, 232 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 517 g
Reihe: Oxford Logic Guides
ISBN: 978-0-19-852633-9
Verlag: OUP Oxford
This book is a specialized monograph on the development of the mathematical and computational metatheory of reductive logic and proof-search, areas of logic that are becoming important in computer science. A systematic foundational text on these emerging topics, it includes proof-theoretic, semantic/model-theoretic and algorithmic aspects. The scope ranges from the conceptual background to reductive logic, through its mathematical metatheory, to its modern
applications in the computational sciences.
Suitable for researchers and graduate students in mathematical, computational and philosophical logic, and in theoretical computer science and artificial intelligence, this is the latest in the prestigous world-renowned Oxford Logic Guides, which contains Michael Dummet's Elements of intuitionism (2nd Edition), Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger's Temporal Logic Mathematical Foundations and Computational Aspects, J. M. Dunn and G. Hardegree's
Algebraic Methods in Philosophical Logic, H. Rott's Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning, and P. T. Johnstone's Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Populärwissenschaftliche Werke
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Geisteswissenschaften Philosophie Geschichte der Westlichen Philosophie
- Geisteswissenschaften Philosophie Philosophische Logik, Argumentationstheorie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten




