E-Book, Englisch, 582 Seiten
Rahaman / Khastgir / Aldalbahi Carbon-Containing Polymer Composites
1. Auflage 2018
ISBN: 978-981-13-2688-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 582 Seiten
Reihe: Springer Series on Polymer and Composite Materials
ISBN: 978-981-13-2688-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.
Dr. Mostafizur Rahaman is an Assistant Professor at the Department of Chemistry at the College of Science, King Saud University, Riyadh 11451, Saudi Arabia. He obtained his M. Sc. (Chemistry) from T. M. Bhagalpur University, India and Ph. D. (Chemical/Polymer Chemistry) from the Indian Institute of Technology Kharagpur, India. He completed his M. Tech. in Plastics Engineering at the Central Institute of Plastics Engineering and Technology (CIPET), Bhubaneswar, Orissa, India. He has published 60 papers and 5 communicated manuscripts in international journals and 15 research articles in international conference proceedings. He has also published 1 patent and 1 book. Dr. Rahaman has 9 years of teaching and 10 years of research experience. He has completed six research projects and attended/presented at various international conferences/seminars. He has been an active reviewer for various international journals and member of journal advisory boards. An expert in handling sophisticated instruments. His research interests include polymer nanotechnology/nanocomposites; polymer membrane, polymer thin film; polymer-based sensors; catalytic synthesis of polymers and conducting polymers; polymer-based coating for corrosion protection; polymer fuel cell and solar energy and bio-polymers for biomedical applications.
Dr. Dipak Khastgir is a Professor of Rubber Technology Centre at the Indian Institute of Technology (IIT), Kharagpur, India. He obtained his M. Sc. (Physical Chemistry) and Ph. D. (Polymer Composites) at IIT Kharagpur in 1975 and 1984, respectively. His research areas include conductive polymer (polyaniline, synthesis and characterizaton); rubber-carbon conductive composite for EMI shielding application and pressure sensitive conductive rubber; high voltage polymeric insulators and piezoelectric polymer composites; characterization of rubber and rubber -like-materials; textile reinforcement of rubber products; and industrial rubber product design & technology. He has published over 180 papers in refereed international journals, 70 seminar & conference proceedings, and 6 books. Dr. Ali Kanakhir Aldalbahi is Vice Dean (Research) at King Abdullah Institute for Nanotechnology; Associate Professor at the Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; and Director of the Distinguished Student Program at King Saud University. He obtained his Ph. D. in Chemistry (Nanotechnology) and Master's in Chemistry (Nanotechnology) at Wollongong University in 2013 and 2008 respectively. He is a member of Australian Nanotechnology Network (ANN), Australian Student Leadership Association (ASLA), Saudi Chemical Society (SCS) and Material Research Society (MRS). He has published more than 100 papers in national and international journals.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;About the Editors;10
4;1 Synthesis/Preparation of Carbon Materials;12
4.1;Abstract;12
4.2;1 Synthesis of Diamonds;13
4.2.1;1.1 History of Diamond Synthesis;13
4.2.2;1.2 Different Methods for the Synthesis of Diamonds;14
4.2.3;1.3 Chemical Vapor Deposition (CVD) Technique;17
4.2.4;1.4 Nanodiamonds (NDs);20
4.3;2 Fullerene Synthesis;21
4.3.1;2.1 Different Methods of Fullerene Synthesis;21
4.3.2;2.2 Extraction of Fullerene;24
4.4;3 Synthesis of Graphite;25
4.4.1;3.1 Graphite Electrode;25
4.4.2;3.2 Water-Soluble Graphite;25
4.4.3;3.3 Expanded Graphite;26
4.4.4;3.4 Hydrothermal Synthesis of Graphite;28
4.4.5;3.5 Graphite Encapsulated Metal (GEM) Nanoparticles;29
4.4.6;3.6 Miscellaneous Synthesis of Graphite;30
4.5;4 Preparation of Carbon Black;31
4.5.1;4.1 Carbon Black Manufacturing Processes;31
4.5.2;4.2 Channel Black Process;31
4.5.3;4.3 Gas Black Process;32
4.5.4;4.4 Thermal Black Process;32
4.5.5;4.5 Acetylene Black Process;33
4.5.6;4.6 Lamp Black Process;33
4.5.7;4.7 Furnace Black Process;33
4.5.8;4.8 Miscellaneous Synthesis Methods of Carbon Black;34
4.5.8.1;4.8.1 Pyrolysis of Hydrocarbons;34
4.5.8.2;4.8.2 Pyrolysis of Polymer;35
4.5.8.3;4.8.3 Plasma Synthesis;35
4.5.8.4;4.8.4 Hydrolysis of Natural Resources;36
4.5.9;4.9 Synthesis of Activated Carbon;36
4.6;5 Synthesis of Carbon Fiber;36
4.6.1;5.1 Introduction;36
4.6.2;5.2 Synthesis Method;37
4.6.2.1;5.2.1 Spinning;38
4.6.2.2;5.2.2 Stabilizing;38
4.6.2.3;5.2.3 Carbonization;38
4.6.2.4;5.2.4 Treating the Surface;39
4.6.2.5;5.2.5 Sizing;39
4.7;6 Synthesis of Carbon Nanofibers;39
4.7.1;6.1 Introduction;39
4.7.2;6.2 Synthesis Methods;40
4.7.3;6.3 Vapor Grown Nanofiber;41
4.7.4;6.4 Catalytically Grown Nanofibers;41
4.7.5;6.5 Procedure of Synthesizing Carbon Nanofibers;43
4.7.6;6.6 Electrospinning;43
4.7.7;6.7 Template Method;44
4.7.8;6.8 Carbon Film Casting;45
4.8;7 Carbon Nanotube Synthesis;45
4.8.1;7.1 Physical Methods;47
4.8.1.1;7.1.1 Laser Ablation;47
4.8.1.2;7.1.2 Arc Discharge;47
4.8.2;7.2 Chemical Methods;48
4.8.2.1;7.2.1 Chemical Vapor Deposition;49
4.8.2.2;7.2.2 High-Pressure Carbon Monoxide Reaction (HiPco®);50
4.8.2.3;7.2.3 CoMoCAT® Process;51
4.8.3;7.3 Miscellaneous Methods;51
4.8.3.1;7.3.1 Flame Method;51
4.8.3.2;7.3.2 Electrolysis;52
4.8.3.3;7.3.3 Ultrasonication;52
4.9;8 Synthesis of Graphene;53
4.9.1;8.1 Introduction;53
4.9.2;8.2 Top-Down Approaches;53
4.9.2.1;8.2.1 Mechanical Breakage;53
4.9.2.2;8.2.2 Direct Sonication;54
4.9.2.3;8.2.3 Electrochemical Exfoliation;54
4.9.2.4;8.2.4 Super Acid Dissolution;55
4.9.2.5;8.2.5 Chemical Exfoliation of GO;55
4.9.2.6;8.2.6 Thermal Exfoliation of GO;56
4.9.3;8.3 Bottom-Up Approaches;56
4.9.3.1;8.3.1 Epitaxial Growth;56
4.9.3.2;8.3.2 Arc Discharge;56
4.9.3.3;8.3.3 Chemical Vapor Deposition;59
4.9.3.4;8.3.4 Unzipping of Carbon Nanotube;59
4.9.3.5;8.3.5 Reduction of CO;60
4.10;9 Summary;60
4.11;References;63
5;2 Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview;76
5.1;Abstract;76
5.2;1 Introduction;77
5.3;2 Different Techniques for the Modification/Functionalization of Carbon Materials;78
5.3.1;2.1 Surface Oxidation;78
5.3.1.1;2.1.1 Wet Oxidation;79
5.3.1.2;2.1.2 Dry Oxidation (Gas Phase Oxidation);83
5.3.1.2.1;Oxidation with Air;83
5.3.1.2.2;Oxidation with Ozone;84
5.3.1.2.3;Plasma;87
5.3.2;2.2 Covalent Coupling via the Oxidized Carbon Materials;91
5.3.2.1;2.2.1 Amidation;91
5.3.2.2;2.2.2 Silylation;93
5.3.2.3;2.2.3 Silanization;94
5.3.2.4;2.2.4 Grafting of Polymers Chains;97
5.3.3;2.3 Noncovalent Functionalization;98
5.3.3.1;2.3.1 Polymer Wrapping;98
5.3.3.2;2.3.2 Surfactant Adsorption;99
5.3.3.3;2.3.3 Encapsulation;101
5.3.4;2.4 Conclusion;103
5.4;References;103
6;3 Preparation/Processing of Polymer–Carbon Composites by Different Techniques;110
6.1;Abstract;110
6.2;1 Processing of Conducting Composite Materials;111
6.2.1;1.1 Composites by Solution Processing;111
6.2.1.1;1.1.1 Evaporative Casting;111
6.2.1.2;1.1.2 Vacuum Filtration;112
6.2.1.3;1.1.3 Fiber Spinning;114
6.2.1.4;1.1.4 Printing;115
6.2.2;1.2 Composites by Melt Processing;117
6.2.3;1.3 Composites by In Situ Polymerization Process;121
6.2.4;1.4 Dry Mixing Technique;123
6.2.5;1.5 Powder Mixing Technique;125
6.2.6;1.6 Aqueous Mixing Technique;127
6.2.7;1.7 Conclusions;129
6.3;References;129
7;4 Mechanical Properties of Carbon-Containing Polymer Composites;136
7.1;Abstract;136
7.2;1 Introduction;137
7.3;2 Carbon Black Composites;137
7.4;3 Graphite Composites;138
7.5;4 Fullerene Composites;140
7.6;5 Nano Diamond Composites;142
7.7;6 Carbon Nano Fibre (CNF) Composites;145
7.8;7 Carbon Nanotube Polymer Composites;146
7.9;8 Graphene Polymer Nanocomposites;158
7.10;9 Hybrid Nanocomposites;161
7.11;10 Conclusions;162
7.12;References;163
8;5 Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors;169
8.1;Abstract;169
8.2;1 Introduction;170
8.2.1;1.1 Polymers on the Basis of Electrical Property;170
8.2.2;1.2 Intrinsically Conducting Polymers;170
8.2.3;1.3 Extrinsically Conducting Polymers;170
8.2.4;1.4 Conductivity Mechanism;171
8.3;2 Different Types of Electrical Resistivity/Conductivity and Their Measurements;171
8.3.1;2.1 Surface Resistance and Resistivity;172
8.3.2;2.2 Volume/Bulk Resistance and Resistivity;174
8.3.3;2.3 Contact Resistance and Resistivity;175
8.3.4;2.4 Van der Pauw Technique for Resistivity Measurement;177
8.4;3 Preparation Methods of Conductive Polymer Composites;178
8.5;4 Percolation Theory;178
8.6;5 Effect of Different Factors on Electrical Conductivity of Polymer Composites;180
8.6.1;5.1 Types of Fillers;181
8.6.1.1;5.1.1 Diamond;181
8.6.1.2;5.1.2 Fullerene;181
8.6.1.3;5.1.3 Graphite;183
8.6.1.4;5.1.4 Carbon Black;183
8.6.1.5;5.1.5 Carbon Fiber and Nanofiber;185
8.6.1.6;5.1.6 Carbon Nanotubes;186
8.6.1.7;5.1.7 Graphene;189
8.6.2;5.2 Amount/Concentration of Fillers;190
8.6.3;5.3 Structure of Fillers;192
8.6.4;5.4 Aspect Ratio of Fillers;192
8.6.5;5.5 Functionalization of Carbons;193
8.6.6;5.6 Filler Orientation and Waviness;194
8.6.7;5.7 Polymer Matrix;197
8.6.8;5.8 Polymer Blend;197
8.6.9;5.9 Effect of Temperature;198
8.6.10;5.10 Effect of Pressure;201
8.6.11;5.11 Processing Conditions;202
8.6.11.1;5.11.1 Dispersion of Conductive Particles;203
8.6.11.2;5.11.2 Mixing Time;204
8.6.11.3;5.11.3 Rotor Speed;205
8.6.11.4;5.11.4 Mixing Temperature;206
8.6.11.5;5.11.5 Mold Pressure;207
8.6.12;5.12 Forming Process and Vulcanization;208
8.6.13;5.13 Mechanical Deformation;209
8.6.14;5.14 Effect of Frequency;209
8.7;6 Conclusions;210
8.8;References;211
9;6 Dielectric Properties of Polymer–Carbon Composites;221
9.1;Abstract;221
9.2;1 Introduction;221
9.3;2 Types of Carbon Fillers and Their Use in Polymer Composites;222
9.4;3 Factors Affecting the Dielectric Properties of Polymer–Carbon Composites;223
9.4.1;3.1 Effect of Processing Conditions;223
9.4.2;3.2 Effect of Morphology;226
9.4.3;3.3 Effect of Frequency and Filler Concentration;229
9.4.4;3.4 Effect of Temperature;234
9.4.5;3.5 Effect of Applied Pressure;236
9.4.6;3.6 Effect of Electric Field (Poling);239
9.5;4 Summary and Conclusions;241
9.6;References;242
10;7 Thermal Properties of Polymer–Carbon Nanocomposites;245
10.1;Abstract;245
10.2;1 Introduction;245
10.3;2 Thermal Properties of Polymers and Their Nanocomposites;246
10.3.1;2.1 Thermal Stability of Polymers and Nanocomposites;246
10.3.2;2.2 Transition Temperatures of Polymers and Nanocomposites;248
10.4;3 Thermal Properties of Polymer–Carbon Nanotube Composites;250
10.4.1;3.1 Thermal Stability of Polymer/Carbon Nanotube Nanocomposites;251
10.4.2;3.2 Transition Temperatures of Polymer/CNT Nanocomposites;254
10.5;4 Thermal Properties of Polymer–Graphene Nanocomposites;257
10.5.1;4.1 Thermal Stability of Graphene-Polymer Composites;259
10.5.2;4.2 Transition Temperatures of Graphene-Polymer Composites;260
10.6;5 Thermal Properties of Polymer–Carbon Nanofiber Nanocomposites;262
10.6.1;5.1 Thermal Stability of Polymer–Carbon Fiber Nanocomposites;263
10.6.2;5.2 Transition Temperatures of Polymer–CNF Composites;264
10.7;6 Polymer–Fullerene Nanocomposites;266
10.7.1;6.1 Thermal Stability of Polymer–Fullerene Nanocomposites;267
10.7.2;6.2 Transition Temperatures in Polymer–Fullerene Composites;268
10.8;7 Conclusions and Future Prospects;270
10.9;Acknowledgements;270
10.10;References;270
11;8 Rheological Properties of Polymer–Carbon Composites;281
11.1;Abstract;281
11.2;1 Introduction;282
11.2.1;1.1 Overview of Polymer Rheology;283
11.2.1.1;1.1.1 Why the Polymer Rheology Is Significant?;283
11.2.1.2;1.1.2 Basic Flow Characteristics of Polymers;284
11.2.1.3;1.1.3 Polymer Melts and Blends;285
11.2.1.3.1;Brief Development of Multi-component Polymer Blends;287
11.2.1.3.2;Polymer Blends with Effective Miscibility;288
11.2.1.3.3;Viscoelasticity of Materials;289
11.2.1.4;1.1.4 Rheological Modelling on Viscoelasticity;290
11.2.2;1.2 Polymer–Carbon Black Composites;294
11.2.3;1.3 Polymer–Carbon Nanotube (CNT) Composites;297
11.3;2 Summary;300
11.4;References;301
12;9 Morphology and Spectroscopy of Polymer–Carbon Composites;305
12.1;Abstract;305
12.2;1 Introduction;306
12.3;2 Morphology and Spectroscopic Characterization;307
12.3.1;2.1 Morphology;307
12.3.2;2.2 Spectroscopy;309
12.4;3 Morphology and Spectroscopy of Polymer/Carbon Filler Composites;310
12.4.1;3.1 Polymer/Carbon Black Composites;311
12.4.2;3.2 Polymer/Carbon (Nano) Fiber Composites;315
12.4.3;3.3 Polymer/Carbon Nanotube (CNT) Composites;320
12.4.4;3.4 Polymer/Fullerene Composites;328
12.4.5;3.5 Polymer/(Nano) Diamond Composites;334
12.4.6;3.6 Polymer/Graphite or Graphene Composites;336
12.5;4 Conclusion;343
12.6;References;343
13;10 Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites;349
13.1;Abstract;349
13.2;1 Introduction;350
13.3;2 EMI;350
13.4;3 EMI Shielding;351
13.5;4 EMI SE Theory;353
13.6;5 Requirements for Shielding;354
13.7;6 Compounding Considerations for Shielding;356
13.8;7 Polymer/Carbon Filler Based Composites as EMI Shielding Materials;359
13.8.1;7.1 Polymer/Carbon Fiber (CF) Based Composites;359
13.8.2;7.2 Polymer/Carbon Black (CB) Based Composites;360
13.8.3;7.3 Polymer/Carbon Nanotube (CNT) Based Composites;362
13.8.4;7.4 Polymer/Graphene-Based Composites;364
13.9;8 Conclusion;371
13.10;Acknowledgements;372
13.11;References;372
14;11 Thermal Conductivity of Polymer–Carbon Composites;379
14.1;Abstract;379
14.2;1 Introduction;379
14.2.1;1.1 Definition of Thermal Conductivity;380
14.2.2;1.2 Thermal Conductivity Measurement;381
14.2.3;1.3 Thermal Conductivity Behaviour of Low Dielectrics Polymer;382
14.2.4;1.4 Effect of Crystallinity and Temperature on the Thermal Conductivity of Polymers;384
14.3;2 Various Carbon Fillers for Thermally Conductive Polymer Composites;385
14.4;3 Role of Different Parameter of Filler on Thermal Conductivity Behaviour of Composites;390
14.4.1;3.1 Role of Size and Shape of Filler;390
14.4.2;3.2 Role of Diameter;390
14.4.3;3.3 Role of Length;392
14.4.4;3.4 Role of Surface Modifications;395
14.4.5;3.5 Role of Interface Resistance and Dispersion of Filler in Matrix Polymer;398
14.5;4 Overview of Different Model to Explain the Thermal Conductivity Behaviour of Polymer Composites;399
14.6;5 Summary;403
14.7;References;403
15;12 Electrical and Electronic Application of Polymer–Carbon Composites;407
15.1;Abstract;407
15.2;1 Introduction;408
15.2.1;1.1 Different Carbon-Based Materials Used in Polymer Composites;408
15.2.1.1;1.1.1 Graphite;408
15.2.1.2;1.1.2 Graphene;408
15.2.1.3;1.1.3 Fullerenes;409
15.2.1.4;1.1.4 Carbon Nanotubes (CNTs);410
15.2.1.5;1.1.5 Carbon Fibers and Nanofibers;410
15.2.1.6;1.1.6 Carbon Black;411
15.2.1.7;1.1.7 Conductive Carbon Black;411
15.3;2 Polymer–Carbon Filler Composites;412
15.4;3 Electrically Conductive Polymer/Composites;413
15.4.1;3.1 Percolation;413
15.5;4 Electrical and Electronic Applications of Carbon Filler Filled Polymer Composites;415
15.5.1;4.1 Microelectronics;415
15.5.2;4.2 Integrated Circuit;416
15.5.3;4.3 Printed Circuit Board;417
15.5.4;4.4 Interconnection;417
15.5.5;4.5 Die Attach;418
15.5.6;4.6 Solder Joints;418
15.5.7;4.7 Heat Sink;419
15.5.8;4.8 Lid/Enclosure;420
15.5.9;4.9 Thermal Interface Material;420
15.5.10;4.10 Electrically Conductive Adhesives;421
15.5.11;4.11 Transparent Conductive Coatings/Flexible Conductors;422
15.5.12;4.12 Display;423
15.5.13;4.13 Organic Light-Emitting Diode (OLED);424
15.5.14;4.14 Electroluminescent Device;426
15.5.15;4.15 Photovoltaic Device;427
15.5.16;4.16 Sensor;429
15.5.17;4.17 Actuator;432
15.5.18;4.18 Electrode;434
15.5.19;4.19 Battery;436
15.5.20;4.20 Capacitor;438
15.5.21;4.21 Supercapacitor/Ultracapacitor;439
15.5.22;4.22 ESD and EMI Shielding;441
15.5.23;4.23 Memory Devices;444
15.5.24;4.24 Fuel Cells;445
15.5.25;4.25 Field-Effect Transistor;450
15.6;5 Conclusions;452
15.7;References;453
16;13 Structural/Load-Bearing Characteristics of Polymer–Carbon Composites;466
16.1;Abstract;466
16.2;1 Introduction;466
16.3;2 Carbon-Based Materials;468
16.3.1;2.1 Classification of Carbon-Based Materials;468
16.3.2;2.2 Structure of Carbon-Based Materials;468
16.3.2.1;2.2.1 Graphene;468
16.3.2.2;2.2.2 Graphite and Graphite Nanoplatelets;470
16.3.2.3;2.2.3 Carbon Nanotubes (CNTs);471
16.3.2.4;2.2.4 Fullerene;473
16.3.2.5;2.2.5 Diamond;474
16.3.2.6;2.2.6 Nanodiamond;474
16.3.2.7;2.2.7 Carbon Fiber (CFs);476
16.3.2.8;2.2.8 Carbon Nanofiber (CNFs);476
16.3.2.9;2.2.9 Carbon Black;477
16.3.3;2.3 Comparison of Physical and Mechanical Properties of CBMs;479
16.4;3 Properties Related to Load-Bearing Characteristics of Carbon-Containing Polymer Composites;479
16.4.1;3.1 Strength;481
16.4.2;3.2 Modulus of Elasticity;481
16.4.3;3.3 Stiffness;481
16.4.4;3.4 Hardness;482
16.4.5;3.5 Toughness;482
16.4.6;3.6 Ductility;483
16.4.7;3.7 Fatigue;483
16.4.8;3.8 Creep;483
16.4.9;3.9 Temperature Resistance;483
16.4.10;3.10 Corrosion Resistance;484
16.5;4 Load-Bearing Mechanisms of Carbon-Containing Polymer Composites;484
16.6;5 Factors Influencing the Load-Bearing Characteristics of Carbon-Containing Polymer Composites;485
16.6.1;5.1 Nature of Polymer and Filler;485
16.6.2;5.2 Dispersion of CBMs;486
16.6.3;5.3 Loading of CBMs;487
16.6.4;5.4 Interfacial Interaction Between Polymer and CBMs;488
16.6.5;5.5 Notches and Cracks;489
16.6.5.1;5.5.1 UV Radiation;489
16.6.5.2;5.5.2 Thermal Effect;489
16.6.5.3;5.5.3 Hydrothermal Aging;490
16.6.5.4;5.5.4 Chemical Environment;490
16.6.6;5.6 Surrounding Environmental Condition;491
16.7;6 Load-Bearing Behavior of Different Carbon-Containing Polymer Composites;491
16.7.1;6.1 Diamond and Nanodiamond/Polymer Composites;491
16.7.2;6.2 Carbon Black/Polymer Composites;492
16.7.3;6.3 Graphite and Graphite Nanoplatelets/Polymer Composites;493
16.7.4;6.4 Graphene/Polymer Composites;493
16.7.5;6.5 Carbon Nanotube/Polymer Composites;494
16.7.6;6.6 Carbon Fiber/Polymer Composites;495
16.7.7;6.7 Carbon Nanofiber/Polymer Composites;496
16.7.8;6.8 Fullerene/Polymer Composites;497
16.8;7 Applications;498
16.8.1;7.1 Infrastructure;499
16.8.2;7.2 Aerospace Structures;499
16.8.3;7.3 Automotive Body Parts;500
16.8.4;7.4 Biomedical Applications;501
16.8.5;7.5 Sports Equipment;502
16.8.6;7.6 Energy Storage;503
16.8.7;7.7 Marine Structures;505
16.8.8;7.8 Pipelines and Chemical Plants;505
16.8.9;7.9 Others;506
16.9;8 Conclusions;506
16.10;Acknowledgements;506
16.11;References;506
17;14 Polymer/Carbon Composites for Sensor Application;512
17.1;Abstract;512
17.2;1 Introduction;512
17.3;2 Mechanisms of Sensor Activity;513
17.4;3 Temperature Sensor;514
17.5;4 Strain Sensor;518
17.6;5 Chemical Sensor;524
17.7;6 Concluding Remarks;536
17.8;References;536
18;15 The Use of Polymer–Carbon Composites in Fuel Cell and Solar Energy Applications;541
18.1;Abstract;541
18.2;1 Introduction;542
18.3;2 Carbon/Polymer Composites in Fuel Cell Applications;544
18.4;3 Carbon/Polymer Composites in Solar Energy Applications;546
18.5;4 Summary;551
18.6;References;551
19;16 Polymer-Carbon Composites as Anti-corrosive Materials;553
19.1;Abstract;553
19.2;1 Introduction;553
19.3;2 Various Forms of Corrosion;554
19.3.1;2.1 General Attack Corrosion;554
19.3.2;2.2 Localized Corrosion;554
19.3.3;2.3 Galvanic Corrosion;556
19.3.4;2.4 Environmental Cracking;557
19.3.5;2.5 Flow Assisted Corrosion;557
19.3.6;2.6 Intergranular Corrosion;557
19.3.7;2.7 Dealloying or Selective Leaching;558
19.3.8;2.8 Fretting Corrosion;558
19.4;3 Factors Affecting the Corrosion;559
19.4.1;3.1 Primary Factors;559
19.4.2;3.2 Secondary Factors;560
19.5;4 Corrosion Prevention;561
19.5.1;4.1 Various Coatings Used for Corrosion Prevention;562
19.5.2;4.2 Environmental Effect of Anti-corrosive Paint;563
19.5.3;4.3 Various Anti-corrosive Coatings;565
19.5.4;4.4 Working Principle of Anti-corrosive Coatings;569
19.5.4.1;4.4.1 Barrier Protection;570
19.5.4.2;4.4.2 Inhibitive Protection;570
19.5.4.3;4.4.3 Sacrificial Protection;570
19.6;5 Additives;571
19.7;6 Role of Carbon in Advance Anti-corrosive Paint;572
19.8;7 Recent Developments in the Polymer-Carbon Coating for Anti-corrosion Applications;573
19.8.1;7.1 Graphene Oxide as a Corrosion Inhibitor for the Aluminium Current Collector in Lithium Ion Batteries;573
19.8.2;7.2 Graphene Oxide Based Nanopaint;573
19.8.3;7.3 Polyaniline Graphene Composite: Advance Anti-corrosion Coating for Metals;574
19.8.4;7.4 Graphene Barrier Properties to Dissolution of Nickel and Copper Metal;578
19.9;8 Conclusion;580
19.10;References;580




