E-Book, Englisch, 279 Seiten
Riccio Damage Growth in Aerospace Composites
1. Auflage 2015
ISBN: 978-3-319-04004-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 279 Seiten
Reihe: Springer Aerospace Technology
ISBN: 978-3-319-04004-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Introduction;8
2.1;1.1 State of the Art of European Projects on Composites Damage Management;8
2.2;1.2 AG-32 Objectives and Relationships with Previous Projects;11
2.3;1.3 AG-32 Work Breakdown Structure and Presentation of Results;12
3;Part I Detailed Methodologies for Damage Growth in Aerospace Composites;14
4;2 Detailed Methodologies for Integrated Delamination Growth and Fiber-Matrix Damage Progression Simulation;15
4.1;2.1 Introduction;15
4.2;2.2 Objectives;17
4.3;2.3 Description of the Method;18
4.3.1;2.3.1 Phenomenology;18
4.3.2;2.3.2 Theoretical Background;20
4.3.2.1;2.3.2.1 Intra-laminar Damage: A Progressive Damage Procedure;20
4.3.2.2;2.3.2.2 Stress Evaluation;20
4.3.2.3;2.3.2.3 Failure Criteria and Material Properties Degradation Rules;21
4.3.2.4;2.3.2.4 Inter-laminar Damage: Energy Release Rate and Crack Growth Criteria;23
4.3.3;2.3.3 Numerical Implementations in B2000;24
4.3.3.1;2.3.3.1 Progressive Damage Brick Element;25
4.3.3.2;2.3.3.2 Interface Fracture Element for Delamination Growth;26
4.3.3.3;2.3.3.3 Contact Element;28
4.3.4;2.3.4 Numerical Tool for Intra-laminar Damage and Delamination Growth;28
4.3.5;2.3.5 Benefits and Limitations of the Method and Added Value with Respect to the State of the Art;30
4.4;2.4 Validation of the Developed Numerical Tools: B2000 Applications;31
4.4.1;2.4.1 Tension-Loaded Laminate with Hole;31
4.4.2;2.4.2 Composite Delaminated Panels Loaded in Compression;34
4.4.3;2.4.3 Specimen Configuration #SS3;38
4.4.4;2.4.4 Specimen Configuration #SS4;42
4.4.5;2.4.5 Specimen Configuration #SS5;45
4.5;2.5 ABAQUSTM Exploratory Applications: Stiffened Panels with Embedded Delaminations and a Skin-Stringer Debonding;47
4.5.1;2.5.1 Simulating the Damage Onset and Evolution in ABAQUS;48
4.5.1.1;2.5.1.1 Inter-laminar Damage;48
4.5.1.2;2.5.1.2 Intra-Laminar Damage;49
4.5.2;2.5.2 Stiffened Panel with an Embedded Bay Delamination;50
4.5.3;2.5.3 Stiffened Panel with an Skin-Stringer Debonding;56
4.6;References;64
5;3 Delamination and Debonding Growth in Composite Structures;68
5.1;3.1 Introduction;68
5.2;3.2 Delamination Growth;70
5.2.1;3.2.1 Virtual Crack Closure Technique Fundamentals;71
5.2.2;3.2.2 Validation Benchmark Definition;72
5.2.3;3.2.3 FE Model Definition and Buckling Simulations;72
5.2.4;3.2.4 Delamination Growth Algorithm;75
5.2.5;3.2.5 Correlation Between FE Simulations and Tests;77
5.2.6;3.2.6 Mesh Size Effect;78
5.2.7;3.2.7 Comparison Among Mixed-Mode Failure Criteria;78
5.2.8;3.2.8 Conclusions and Future Work;80
5.3;3.3 Debonding Growth;81
5.3.1;3.3.1 FE Modelling of DCB Coupons;82
5.3.2;3.3.2 Cohesive Zone (CZ) Elements;83
5.3.3;3.3.3 Mesh Dependency;84
5.3.4;3.3.4 Experimental Results on DCB Coupons;86
5.3.5;3.3.5 Correlation FE Model Simulation—Tests—DCB Coupons;88
5.3.6;3.3.6 Conclusions and Future Work;91
5.4;References;92
6;4 Delamination Growth in Composite Plates Under Fatigue Loading Conditions;94
6.1;4.1 Introduction;94
6.2;4.2 Fatigue Degradation: Linear Approach;95
6.3;4.3 Fatigue Degradation: Non-linear Approach;97
6.4;4.4 Numerical Application: Delamination Growth in a Composite Panel Subjected to Fatigue Load;99
6.5;4.5 Numerical Application: Sensitivity Analysis of Damage Propagation of a Delaminated Composite Panel Under Fatigue Load;104
6.6;4.6 Conclusions;109
6.7;References;109
7;5 Influence of Intralaminar Damage on the Delamination Crack Evolution;111
7.1;5.1 Introduction;111
7.2;5.2 Influence of Intralaminar Damage on the Interlaminar Damage Evolution;113
7.2.1;5.2.1 Influence of Intralaminar Damage on Delamination Crack Onset;113
7.2.1.1;5.2.1.1 Identification of the Intrinsic Out-of-Plane Tensile Strength;113
7.2.1.2;5.2.1.2 Determination of the Influence of Intralaminar Damages on the Onset of Delamination;117
7.2.2;5.2.2 Influence of Intralaminar Damage on Delamination Crack Propagation;119
7.2.2.1;5.2.2.1 The Tensile Flexure Test on Notched Specimen;120
7.2.2.1.1;Description of the Experimental Procedure;120
7.2.2.1.2;Description of the Experimental Device;121
7.2.2.1.3;Experimental Observations;122
7.2.2.1.4;Identification of the Interface Toughness in a T700GCM21 CarbonEpoxy Laminate;123
7.2.2.2;5.2.2.2 Demonstration of the Influence of Intralaminar Damage on the Interfacial Fracture Toughness;124
7.3;5.3 Modeling the Effect of Intralaminar Damage on the Interlaminar Damage Evolution;126
7.3.1;5.3.1 Cohesive Zone Model for Modeling the Interlaminar Damage;126
7.3.1.1;5.3.1.1 General Framework of the Cohesive Zone Model;126
7.3.1.2;5.3.1.2 Damage Evolution Law of the Interlaminar Damage;128
7.3.1.3;5.3.1.3 Determination of the Onset Criterion with Reinforcement of the Interfacial Strengths Under Out-of-Plane CompressionShearing Loadings;129
7.3.2;5.3.2 Damage Evolution Law of Intralaminar Damage;132
7.3.3;5.3.3 Damage Evolution Law of Delamination Including the Intralaminar Damage Effect;135
7.3.4;5.3.4 Implementation in a Finite Element Code;136
7.4;5.4 Application on Structural Test Cases;137
7.5;5.5 Conclusions;140
7.6;References;141
8;6 Microdamage Modeling in Laminates;145
8.1;6.1 Introduction;145
8.2;6.2 Experimental Methods for Damage State Characterization;150
8.3;6.3 Damage Initiation and Growth;154
8.3.1;6.3.1 Initiation Stress and Propagation Stress;154
8.3.2;6.3.2 Statistical Nature of Initiation Stress Distribution;157
8.3.3;6.3.3 Energy Release Rate Based Analysis of Intralaminar Crack Propagation;162
8.4;6.4 Stiffness of Damaged Laminate;168
8.4.1;6.4.1 Calculation Expressions;168
8.4.2;6.4.2 Examples of Calculation and Experiments;170
8.5;6.5 Conclusions;173
8.6;References;175
9;Part II Fast Methodologies for Damage Growth in Aerospace Composites;178
10;7 Finite Element Study of Delaminations in Notched Composites;179
10.1;7.1 Finite Element Delamination Study of a Notched Composite Plate;179
10.1.1;7.1.1 Element Type, Mesh, Boundary Condition and Applied Load;181
10.1.2;7.1.2 Assumption and Particular Settings;181
10.1.3;7.1.3 Method;182
10.2;7.2 Results;182
10.2.1;7.2.1 Structural Response;182
10.2.2;7.2.2 Delamination;183
10.2.2.1;7.2.2.1 Delamination Initiation;183
10.2.2.2;7.2.2.2 Delamination Growth;184
10.3;7.3 Comparison and Discussion;185
10.4;7.4 Conclusions;186
10.5;References;187
11;8 Effect of the Damage Extension Through the Thickness on the Calculation of the Residual Strength of Impacted Composite Laminates;188
11.1;8.1 Introduction;188
11.2;8.2 Delamination Buckling and Growth;190
11.2.1;8.2.1 Delamination Buckling Theory;191
11.2.2;8.2.2 Approximate Calculation of Strain Energy Release Rate;192
11.3;8.3 Characterization of Damage;194
11.3.1;8.3.1 Numerical Implementation;194
11.3.2;8.3.2 Description of Method;195
11.3.3;8.3.3 Analytical Tool to Predict Damage Extension;197
11.4;8.4 Benefits and Limitations of the Method and Added Value with Respect to the State of the Art;199
11.5;References;199
12;9 A Fast Numerical Methodology for Delamination Growth Initiation Simulation;200
12.1;9.1 Introduction;200
12.2;9.2 Description of the Method: Theoretical Background;203
12.3;9.3 Finite Element Implementation;211
12.4;9.4 Numerical Application: Sensitivity Analysis on a Stringer-Stiffened Panel with an Embedded Delamination;213
12.5;9.5 Benefits and Limitations of the Method and Added Value with Respect to the State of the Art;216
12.6;References;219
13;Part III Manufacturing and Testing;222
14;10 An Experimental Study on the Strength of Out of Plane Loaded Composite Structures;223
14.1;10.1 Introduction;223
14.2;10.2 Mechanical Tests;224
14.2.1;10.2.1 Bending and Compressions Tests;224
14.2.2;10.2.2 Inspection—NDT and Fractography;225
14.3;10.3 Experimental Results;226
14.3.1;10.3.1 Bending Tests of Impacted Laminates;227
14.3.2;10.3.2 Bending Test of Notched Laminates;228
14.3.3;10.3.3 Fractoraphic Results;228
14.4;10.4 Conclusions;229
14.5;References;230
15;11 Buckling and Collapse Tests Using Advanced Measurement Systems;231
15.1;11.1 Introduction;231
15.2;11.2 Definitions;232
15.3;11.3 DLR Buckling Test Facility;233
15.4;11.4 Preparation of the Test Structures;235
15.5;11.5 Advanced Measurement Systems;236
15.5.1;11.5.1 Before the Test;236
15.5.1.1;11.5.1.1 Non-destructive Testing and Thickness Measurement;236
15.5.1.2;11.5.1.2 ATOS System—Optical Measurement of Imperfections;236
15.5.2;11.5.2 During the Test;237
15.5.2.1;11.5.2.1 ARAMIS System—Optical Measurement of Deformations;237
15.5.2.2;11.5.2.2 Thermography—Measurement of Degradation;239
15.5.2.3;11.5.2.3 Lamb-Waves—Measurement of Degradation;240
15.6;11.6 Material Properties;241
15.7;11.7 Test Results;242
15.7.1;11.7.1 Cyclic Tests and Collapse Test of a Stiffened Panel;242
15.7.2;11.7.2 Buckling Test of an Unstiffened Cylinder;247
15.8;References;248
16;12 Vacuum Infusion Manufacturing of CFRP Panels with Induced Delamination;249
16.1;12.1 Introduction;249
16.2;12.2 Liquid Composite Molding Overview;250
16.3;12.3 Experimental Activity;255
16.3.1;12.3.1 FRCP Manufacturing;255
16.3.2;12.3.2 Microscopy Analysis;259
16.4;12.4 Conclusions;259
16.5;References;261
17;13 Lock-in Thermography to Detect Delamination in Carbon Fibres Reinforced Polymers;262
17.1;13.1 Introduction;262
17.2;13.2 Non-destructive Testing with IRT;263
17.2.1;13.2.1 Basics on Lockin Thermography;264
17.3;13.3 Experimental Analysis;265
17.3.1;13.3.1 Specimens Preparation;265
17.3.2;13.3.2 Test Setup;266
17.4;13.4 Results and Discussion;268
17.4.1;13.4.1 Qualitative Analysis;269
17.4.2;13.4.2 Quantitative Analysis;273
17.5;13.5 Conclusions;276
17.6;References;277




