Buch, Englisch, 338 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Buch, Englisch, 338 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Genetic and Evolutionary Computation
ISBN: 978-1-4419-4123-7
Verlag: Springer US
Genetic Programming Theory and Practice IV was developed from the fourth workshop at the University of Michigan’s Center for the Study of Complex Systems. The workshop was convened in May 2006 to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Technische Informatik Systemverwaltung & Management
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
Weitere Infos & Material
Genetic Programming: Theory and Practice.- Genome-Wide Genetic Analysis Using Genetic Programming: The Critical Need for Expert Knowledge.- Lifting the Curse of Dimensionality.- Genetic Programming for Classifying Cancer Data and Controlling Humanoid Robots.- Boosting Improves Stability and Accuracy of Genetic Programming in Biological Sequence Classification.- Orthogonal Evolution of Teams: A Class of Algorithms for Evolving Teams with Inversely Correlated Errors.- Multidimensional Tags, Cooperative Populations, and Genetic Programming.- Coevolving Fitness Models for Accelerating Evolution and Reducing Evaluations.- Multi-Domain Observations Concerning the Use of Genetic Programming to Automatically Synthesize Human-Competitive Designs for Analog Circuits, Optical Lens Systems, Controllers, Antennas, Mechanical Systems, and Quantum Computing Circuits.- Robust Pareto Front Genetic Programming Parameter Selection Based on Design of Experiments and Industrial Data.- Pursuing the Pareto Paradigm: Tournaments, Algorithm Variations and Ordinal Optimization.- Applying Genetic Programming to Reservoir History Matching Problem.- Comparison of Robustness of Three Filter Design Strategies Using Genetic Programming and Bond Graphs.- Design of Posynomial Models for Mosfets: Symbolic Regression Using Genetic Algorithms.- Phase Transitions in Genetic Programming Search.- Efficient Markov Chain Model of Machine Code Program Execution and Halting.- A Re-Examination of a Real World Blood Flow Modeling Problem Using Context-Aware Crossover.- Large-Scale, Time-Constrained Symbolic Regression.- Stock Selection: An Innovative Application of Genetic Programming Methodology.




