E-Book, Englisch, Band 6, 217 Seiten
Reihe: Cognitive Systems Monographs
Ritter / Sagerer / Dillmann Human Centered Robot Systems
1. Auflage 2009
ISBN: 978-3-642-10403-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Cognition, Interaction, Technology
E-Book, Englisch, Band 6, 217 Seiten
Reihe: Cognitive Systems Monographs
ISBN: 978-3-642-10403-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Human Centered Robotic Systems must be able to interact with humans such that the burden of adaptation lies with the machine and not with the human. This book collates a set of prominent papers presented during a two-day conference on 'Human Centered Robotic Systems' held on November 19-20, 2009, in Bielefeld University, Germany. The aim of the conference was to bring together researchers from the areas of robotics, computer science, psychology, linguistics, and biology who are all focusing on a shared goal of cognitive interaction. A survey of recent approaches, the current state-of-the-art, and possible future directions in this interdisciplinary field is presented. It provides practitioners and scientists with an up-to-date introduction to this dynamic field, with methods and solutions that are likely to significantly impact on our future lives.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;System Integration Supporting Evolutionary Development and Design;10
3.1;Introduction;10
3.2;Related Work;11
3.3;Creating Systems for HRI;12
3.4;Active Control Memory Interface - ACMI;15
3.5;Case - Study and Conclusion;17
3.6;References;18
4;Direct Control of an Active Tactile Sensor Using Echo State Networks;19
4.1;Introduction;19
4.2;Simulations;21
4.3;Discussion and Outlook;25
4.4;References;27
5;Dynamic Potential Fields for Dexterous Tactile Exploration;30
5.1;Introduction;30
5.2;Dynamic Potential Fields for Exploration;31
5.3;Tactile Exploration;32
5.4;Extraction of Grasp Affordances;34
5.5;Future Concepts for Object Recognition;35
5.6;Discussion;36
5.7;References;37
6;Unlimited Workspace - Coupling a Mobile Haptic Interface with a Mobile Teleoperator;39
6.1;Introduction;39
6.2;Proposed Methods;40
6.2.1;Coupling Schemes;41
6.2.2;Control Structure;43
6.3;Setup;44
6.4;Results;44
6.5;Conclusion;46
6.6;References;47
7;An Architecture for Real-Time Control in Multi-robot Systems;48
7.1;Introduction;48
7.2;The $ARCADE$ Framework;49
7.2.1;System Description;49
7.2.2;Evaluation of the Robot Architecture;52
7.3;Application Example;55
7.4;Conclusion;56
7.5;References;56
8;Shared-Control Paradigms in Multi-Operator-Single-Robot Teleoperation;58
8.1;Introduction;58
8.2;Overall MOSR Control Architecture;59
8.3;MOSR Shared-Control Paradigms;60
8.3.1;Visual Coupling of Operators;60
8.3.2;Visual and Haptic Coupling of Operators;61
8.4;Teleoperation System;62
8.5;Experimental Evaluation;63
8.6;Conclusion;66
8.7;References;66
9;Assessment of a Tangible User Interface for an Affordable Humanoid Robot;68
9.1;Introduction;68
9.2;Affordable Humanoid Platform;70
9.3;Experimental Method and Participants;71
9.4;Navigation Task;72
9.5;Gesture Reproduction Task;74
9.6;User Learning Rate;76
9.7;Conclusions;76
9.8;References;77
10;A Cognitively Motivated Route-Interface for Mobile Robot Navigation;78
10.1;Introduction;78
10.2;Related Work;79
10.3;Route Instruction Language (RIL);80
10.4;Instruction Interpreter;83
10.5;Symbol Grounding;84
10.6;Conclusion;85
10.7;References;86
11;With a Flick of the Eye: Assessing Gaze-Controlled Human-Computer Interaction;88
11.1;Introduction;88
11.2;Method;91
11.3;Results and Discussion;93
11.4;General Discussion;96
11.5;References;97
12;Integrating Inhomogeneous Processing and Proto-object Formation in a Computational Model of Visual Attention;98
12.1;Introduction;99
12.2;Inhomogeneous Retinal/V1 Processing;101
12.3;Proto-object Formation;102
12.4;TVA;103
12.5;Results;104
12.6;Outlook;106
12.7;References;107
13;Dimensionality Reduction in HRTF by Using Multiway Array Analysis;108
13.1;Introduction;108
13.2;HRIR Reduction Techniques;109
13.2.1;Principal Component Analysis;110
13.2.2;Tensor-SVD of Three-Way Array;110
13.2.3;Generalized Low Rank Approximations of Matrices;111
13.3;Numerical Simulations;112
13.3.1;Experimental Settings;112
13.3.2;Experimental Results;112
13.4;Conclusion and Future Work;114
13.5;References;115
14;Multimodal Laughter Detection in Natural Discourses;116
14.1;Introduction;116
14.2;Utilized Data;118
14.3;Features;119
14.4;Echo State Network Approach;120
14.5;Experiments and Results;121
14.6;Summary and Discussion;124
14.7;References;124
15;Classifier Fusion Applied to Facial Expression Recognition: An Experimental Comparison;126
15.1;Introduction and Related Work;126
15.2;Classifiers and Classifier Fusion;127
15.3;Data Collection;128
15.4;Experiments and Results;130
15.5;Summary and Conclusion;133
15.6;References;133
16;Impact of Video Source Coding on the Performance of Stereo Matching;135
16.1;Introduction;135
16.2;Evaluation Framework;137
16.2.1;Framework Components;137
16.2.2;Simulation Environment;138
16.3;Results and Discussion;140
16.4;Conclusion and Outlook;143
16.5;References;143
17;3D Action Recognition in an Industrial Environment;145
17.1;Introduction;145
17.2;The 3D Tracking System;147
17.3;Recognition System;147
17.3.1;Trajectory Classifiers;148
17.3.2;Recognition of the Sequence of Working Actions;150
17.4;Experimental Evaluation;151
17.5;Summary and Conclusion;153
17.6;References;154
18;Investigating Human-Human Approach and Hand-Over;155
18.1;Introduction;156
18.2;Methods;157
18.2.1;Experimental Setup;157
18.2.2;Data Analysis;158
18.3;Results;158
18.3.1;Discussion;162
18.4;References;163
19;Modeling of Biomechanical Parameters Based on LTM Structures;165
19.1;Introduction;165
19.2;Experimental Design;167
19.2.1;Participants;167
19.2.2;Biomechanical Analysis;167
19.2.3;LTM Structure Analysis;169
19.2.4;Combination of Biomechanical Parameters and LTM Structures;170
19.3;Results;170
19.4;Discussion;172
19.5;References;173
20;Towards Meaningful Robot Gesture;176
20.1;Introduction;177
20.2;Related Work;177
20.3;An Incremental Model of Speech-Gesture Production;179
20.4;Control Architecture for Robot Gesture;182
20.5;Conclusion and Future Work;183
20.6;References;184
21;Virtual Partner for a Haptic Interaction Task;186
21.1;Introduction;186
21.2;State-of-the-Art;187
21.3;Haptic Interaction Task;187
21.4;Analysis of Human-Human Interaction;189
21.5;Synthesis of Virtual Partner;190
21.5.1;Trajectory Synthesis;190
21.5.2;Simulation;192
21.6;Evaluation of Virtual Male Partner Model;192
21.7;Conclusions and Future Work;193
21.8;References;194
22;Social Motorics – Towards an Embodied Basis of Social Human-Robot Interaction;195
22.1;Introduction;195
22.2;Related Works;196
22.3;Resonant Sensorimotor Basis;196
22.4;ForwardModels;198
22.5;Inverse Models;200
22.6;Resonance-Based Behavior Processing;201
22.7;Results;201
22.8;Conclusion and Outlook;203
22.9;References;204
23;Spatio-Temporal Situated Interaction in Ambient Assisted Living;206
23.1;Motivation;206
23.2;An Architecture for Situated Interaction in AAL;207
23.3;Spatial Knowledge in Context-Sensitive Interaction;209
23.4;Temporal Reasoning for Collaborative Interaction;210
23.5;Conclusion;213
23.6;References;213
24;Author Index;216




