Rocha / Moreira / Mohanty | Integrating Advanced Technologies for Enhanced Security and Efficiency | Buch | 978-3-031-91797-4 | www.sack.de

Buch, Englisch, 398 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 848 g

Reihe: Engineering Cyber-Physical Systems and Critical Infrastructures

Rocha / Moreira / Mohanty

Integrating Advanced Technologies for Enhanced Security and Efficiency


Erscheinungsjahr 2025
ISBN: 978-3-031-91797-4
Verlag: Springer

Buch, Englisch, 398 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 848 g

Reihe: Engineering Cyber-Physical Systems and Critical Infrastructures

ISBN: 978-3-031-91797-4
Verlag: Springer


This book examines the profound impact of emerging innovations on security and operational effectiveness. This book brings together leading experts in artificial intelligence, blockchain, IoT, and cyber security to tackle key challenges in protecting digital and physical infrastructures. Covering areas such as automated threat detection, secure data exchange, and intelligent system optimization, the book offers practical strategies and case studies. Designed for researchers, professionals, and policymakers, it serves as a comprehensive resource for harnessing advanced technologies to build resilient and efficient security frameworks. Whether mitigating cyber threats, streamlining industrial operations, or improving decision-making, this book provides essential insights for navigating today’s rapidly evolving technological landscape.

Rocha / Moreira / Mohanty Integrating Advanced Technologies for Enhanced Security and Efficiency jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


AI-Powered Threat Detection and Prevention.- Cyber Threat Detection and Classification Using Machine Learning Techniques.- A Network Intrusion Detection System using Machine Learning Algorithms.- Enhancing Real-time Security Monitoring: A Hybrid Machine Learning Approach to Cyber Threat Detection.- Hybrid Ensemble Models for Phishing Website Detection: A Comprehensive Comparative Analysis Using varies Classifier Approaches.- Federated Threat Detection with Dirichlet Distribution.- Safeguarding Authenticity: Tackling the  Cybersecurity Implications of Deepfake AI.- Evaluating TabNet’s Performance Against Phishing Threats using Deep Learning for Cybersecurity.- Integrating AI, IoT, and Blockchain for Holistic Solutions.- Pragmatic review and Implementation of models targeted toward the identification of fake social media profiles.- Multi- Task Cascaded Convolutional Neural Network Foundation for Driver Drowsiness Detection.- Countering the Imposters: An Efficient Multimodal Approach to Fake Profile Detection on Social Media Sites.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.