Rockafellar / Wets | Variational Analysis | Buch | 978-3-642-08304-4 | sack.de

Buch, Englisch, 736 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1112 g

Reihe: Grundlehren der mathematischen Wissenschaften

Rockafellar / Wets

Variational Analysis


1.. Auflage 1998. Corr. 3rd printing. Softcover version of original hardcover Auflage 1998
ISBN: 978-3-642-08304-4
Verlag: Springer

Buch, Englisch, 736 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1112 g

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-08304-4
Verlag: Springer


From its origins in the minimization of integral functionals, the notion of 'variations' has evolved greatly in connection with applications in optimization, equilibrium, and control. It refers not only to constrained movement away from a point, but also to modes of perturbation and approximation that are best describable by 'set convergence', variational convergence of functions and the like. This book develops a unified framework and, in finite dimension, provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, maximal monotone mappings, second-order subderivatives, measurable selections and normal integrands.

The changes in this 3 printing mainly concern various typographical corrections, and reference omissions that came to light in the previous printings. Many of these reached the authors' notice through their own re-reading, that of their students and a number of colleagues mentioned in the Preface. The authors also included a few telling examples as well as improved a few statements, with slightly weaker assumptions or have strengthened the conclusions in a couple of instances.

Rockafellar / Wets Variational Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Max and Min.- Convexity.- Cones and Cosmic Closure.- Set Convergence.- Set-Valued Mappings.- Variational Geometry.- Epigraphical Limits.- Subderivatives and Subgradients.- Lipschitzian Properties.- Subdifferential Calculus.- Dualization.- Monotone Mappings.- Second-Order Theory.- Measurability.


Both authors have long worked with applications of convex, and later nonconvex, analysis to problems in optimization. Both are recipients of the Dantzig Prize (awarded by SIAM and the Mathematical Programming Society): Rockafellar in 1982 and Wets in 1994.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.